
In this document

Every application must have an AndroidManifest.xml file
(with precisely that name) in its root directory. The
manifest file provides essential information about your
app to the Android system, which the system must have
before it can run any of the app's code.

Among other things, the manifest file does the following:

It names the Java package for the application. The package

name serves as a unique identifier for the application.

It describes the components of the application, which

include the activities, services, broadcast receivers, and

content providers that compose the application. It also

names the classes that implement each of the components

and publishes their capabilities, such as the Intent (https://developer.android.com/reference

/android/content/Intent.html) messages that they can handle. These declarations inform the

Android system of the components and the conditions in which they can be launched.

It determines the processes that host the application components.

It declares the permissions that the application must have in order to access protected parts of

the API and interact with other applications. It also declares the permissions that others are

required to have in order to interact with the application's components.

It lists the Instrumentation (https://developer.android.com/reference/android

/app/Instrumentation.html) classes that provide profiling and other information as the application

runs. These declarations are present in the manifest only while the application is being

developed and are removed before the application is published.

It declares the minimum level of the Android API that the application requires.

It lists the libraries that the application must be linked against.

Note: As you prepare your Android app to run on Chromebooks, there are some important

hardware and software feature limitations that you should consider. See the App Manifest

Compatibility for Chromebooks (https://developer.android.com/topic/arc/manifest.html) document for more

information.

Android Developers

App Manifest

Manifest file structure

File conventions

File features

Intent filters

Icons and labels

Permissions

Libraries

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

1 von 11 17.11.2016 12:28

Manifest file structure
The code snippet below shows the general structure of the manifest file and every element that it

can contain. Each element, along with all of its attributes, is fully documented in a separate file.

Tip: To view detailed information about any of the elements that are mentioned within the text of

this document, simply click the element name.

Here is an example of the manifest file:

<?xml version="1.0" encoding="utf-8"?>

<manifest> (https://developer.android.com/guide/topics/manifest/manifest-element.html)

<uses-permission /> (https://developer.android.com/guide/topics/manifest/uses-permission-element.html
<permission /> (https://developer.android.com/guide/topics/manifest/permission-element.html
<permission-tree /> (https://developer.android.com/guide/topics/manifest/permission-tree-element.html
<permission-group /> (https://developer.android.com/guide/topics/manifest/permission-group-element.html
<instrumentation /> (https://developer.android.com/guide/topics/manifest/instrumentation-element.html
<uses-sdk /> (https://developer.android.com/guide/topics/manifest/uses-sdk-element.html)
<uses-configuration /> (https://developer.android.com/guide/topics/manifest/uses-configuration-element.ht
<uses-feature /> (https://developer.android.com/guide/topics/manifest/uses-feature-element.html
<supports-screens /> (https://developer.android.com/guide/topics/manifest/supports-screens-element.html
<compatible-screens /> (https://developer.android.com/guide/topics/manifest/compatible-screens-element.ht
<supports-gl-texture /> (https://developer.android.com/guide/topics/manifest/supports-gl-texture-element.

<application> (https://developer.android.com/guide/topics/manifest/application-element.html

<activity> (https://developer.android.com/guide/topics/manifest/activity-element.html)
<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-element.html

<action /> (https://developer.android.com/guide/topics/manifest/action-element.html
<category /> (https://developer.android.com/guide/topics/manifest/category-element.html
<data /> (https://developer.android.com/guide/topics/manifest/data-element.html

</intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-element.html
<meta-data /> (https://developer.android.com/guide/topics/manifest/meta-data-element.html

</activity> (https://developer.android.com/guide/topics/manifest/activity-element.html

<activity-alias> (https://developer.android.com/guide/topics/manifest/activity-alias-element.html
<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-element.html
<meta-data /> (https://developer.android.com/guide/topics/manifest/meta-data-element.html

</activity-alias> (https://developer.android.com/guide/topics/manifest/activity-alias-element.html

<service> (https://developer.android.com/guide/topics/manifest/service-element.html)
Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

2 von 11 17.11.2016 12:28

<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-element.html
<meta-data/> (https://developer.android.com/guide/topics/manifest/meta-data-element.html

</service> (https://developer.android.com/guide/topics/manifest/service-element.html)

<receiver> (https://developer.android.com/guide/topics/manifest/receiver-element.html)
<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-element.html
<meta-data /> (https://developer.android.com/guide/topics/manifest/meta-data-element.html

</receiver> (https://developer.android.com/guide/topics/manifest/receiver-element.html

<provider> (https://developer.android.com/guide/topics/manifest/provider-element.html)
<grant-uri-permission /> (https://developer.android.com/guide/topics/manifest/grant-uri-permiss
<meta-data /> (https://developer.android.com/guide/topics/manifest/meta-data-element.html
<path-permission /> (https://developer.android.com/guide/topics/manifest/path-permission-element

</provider> (https://developer.android.com/guide/topics/manifest/provider-element.html

<uses-library /> (https://developer.android.com/guide/topics/manifest/uses-library-element.html

</application> (https://developer.android.com/guide/topics/manifest/application-element.html

</manifest> (https://developer.android.com/guide/topics/manifest/manifest-element.html)

The following list contains all of the elements that can appear in the manifest file, in alphabetical

order:

<action> (https://developer.android.com/guide/topics/manifest/action-element.html)

<activity> (https://developer.android.com/guide/topics/manifest/activity-element.html)

<activity-alias> (https://developer.android.com/guide/topics/manifest/activity-alias-

element.html)

<application> (https://developer.android.com/guide/topics/manifest/application-element.html)

<category> (https://developer.android.com/guide/topics/manifest/category-element.html)

<data> (https://developer.android.com/guide/topics/manifest/data-element.html)

<grant-uri-permission> (https://developer.android.com/guide/topics/manifest/grant-

uri-permission-element.html)

<instrumentation> (https://developer.android.com/guide/topics/manifest/instrumentation-

element.html)

<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-

element.html)

<manifest> (https://developer.android.com/guide/topics/manifest/manifest-element.html)

<meta-data> (https://developer.android.com/guide/topics/manifest/meta-data-element.html)
Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

3 von 11 17.11.2016 12:28

<permission> (https://developer.android.com/guide/topics/manifest/permission-element.html)

<permission-group> (https://developer.android.com/guide/topics/manifest/permission-group-

element.html)

<permission-tree> (https://developer.android.com/guide/topics/manifest/permission-

tree-element.html)

<provider> (https://developer.android.com/guide/topics/manifest/provider-element.html)

<receiver> (https://developer.android.com/guide/topics/manifest/receiver-element.html)

<service> (https://developer.android.com/guide/topics/manifest/service-element.html)

<supports-screens> (https://developer.android.com/guide/topics/manifest/supports-screens-

element.html)

<uses-configuration> (https://developer.android.com/guide/topics/manifest/uses-configuration-

element.html)

<uses-feature> (https://developer.android.com/guide/topics/manifest/uses-feature-element.html)

<uses-library> (https://developer.android.com/guide/topics/manifest/uses-library-element.html)

<uses-permission> (https://developer.android.com/guide/topics/manifest/uses-permission-

element.html)

<uses-sdk> (https://developer.android.com/guide/topics/manifest/uses-sdk-element.html)

Note: These are the only legal elements – you cannot add your own elements or attributes.

File conventions
This section describes the conventions and rules that apply generally to all of the elements and

attributes in the manifest file.

Elements

Only the <manifest> (https://developer.android.com/guide/topics/manifest/manifest-

element.html) and <application> (https://developer.android.com/guide/topics/manifest

/application-element.html) elements are required. They each must be present and can occur

only once. Most of the other elements can occur many times or not at all. However, at least

some of them must be present before the manifest file becomes useful.

Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

4 von 11 17.11.2016 12:28

If an element contains anything at all, it contains other elements. All of the values are set

through attributes, not as character data within an element.

Elements at the same level are generally not ordered. For example, the <activity>

(https://developer.android.com/guide/topics/manifest/activity-element.html), <provider>

(https://developer.android.com/guide/topics/manifest/provider-element.html), and <service>

(https://developer.android.com/guide/topics/manifest/service-element.html) elements can be

intermixed in any sequence. There are two key exceptions to this rule:

An <activity-alias> (https://developer.android.com/guide/topics/manifest/activity-

alias-element.html) element must follow the <activity> (https://developer.android.com

/guide/topics/manifest/activity-element.html) for which it is an alias.

The <application> (https://developer.android.com/guide/topics/manifest/application-

element.html) element must be the last element inside the <manifest>

(https://developer.android.com/guide/topics/manifest/manifest-element.html) element. In

other words, the </application> closing tag must appear immediately before the

</manifest> closing tag.

Attributes

In a formal sense, all attributes are optional. However, there are some attributes that must be

specified so that an element can accomplish its purpose. Use the documentation as a guide.

For truly optional attributes, it mentions a default value or states what happens in the absence

of a specification.

Except for some attributes of the root <manifest> (https://developer.android.com/guide/topics

/manifest/manifest-element.html) element, all attribute names begin with an android: prefix.

For example, android:alwaysRetainTaskState. Because the prefix is universal, the

documentation generally omits it when referring to attributes by name.

Declaring class names

Many elements correspond to Java objects, including elements for the application itself (the

<application> (https://developer.android.com/guide/topics/manifest/application-

element.html) element) and its principal components: activities (<activity>

(https://developer.android.com/guide/topics/manifest/activity-element.html)), services

(<service> (https://developer.android.com/guide/topics/manifest/service-element.html)),

broadcast receivers (<receiver> (https://developer.android.com/guide/topics/manifest

/receiver-element.html)), and content providers (<provider> (https://developer.android.com

/guide/topics/manifest/provider-element.html)).

If you define a subclass, as you almost always would for the component classes (ActivityTake a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

5 von 11 17.11.2016 12:28

(https://developer.android.com/reference/android/app/Activity.html), Service

(https://developer.android.com/reference/android/app/Service.html), BroadcastReceiver

(https://developer.android.com/reference/android/content/BroadcastReceiver.html), and

ContentProvider (https://developer.android.com/reference/android/content

/ContentProvider.html)), the subclass is declared through a name attribute. The name must

include the full package designation. For example, a Service (https://developer.android.com

/reference/android/app/Service.html) subclass might be declared as follows:

<manifest . . . >
<application . . . >

<service android:name="com.example.project.SecretService" . . . >
 . . .

</service>
 . . .

</application>
</manifest>

However, if the first character of the string is a period, the application's package name (as

specified by the <manifest> (https://developer.android.com/guide/topics/manifest/manifest-

element.html) element's package (https://developer.android.com/guide/topics/manifest

/manifest-element.html#package) attribute) is appended to the string. The following assignment

is the same as that shown above:

<manifest package="com.example.project" . . . >
<application . . . >

<service android:name=".SecretService" . . . >
 . . .

</service>
 . . .

</application>
</manifest>

When starting a component, the Android system creates an instance of the named subclass.

If a subclass isn't specified, it creates an instance of the base class.

Multiple values

If more than one value can be specified, the element is almost always repeated, rather than

multiple values being listed within a single element. For example, an intent filter can list

several actions:

<intent-filter . . . >
<action android:name intent.action.EDIT" />

Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

6 von 11 17.11.2016 12:28

<action android:name="android.intent.action.INSERT" />
<action android:name="android.intent.action.DELETE" />

 . . .
</intent-filter>

Resource values

Some attributes have values that can be displayed to users, such as a label and an icon for an

activity. The values of these attributes should be localized and set from a resource or theme.

Resource values are expressed in the following format:

@[<i>package</i>:]<i>type</i>/<i>name</i>

You can ommit the package name if the resource is in the same package as the application.

The type is a type of resource, such as string or drawable, and the name is the name that

identifies the specific resource. Here is an example:

<activity android:icon="@drawable/smallPic" . . . >

The values from a theme are expressed similarly, but with an initial ? instead of @:

?[<i>package</i>:]<i>type</i>/<i>name</i>

String values

Where an attribute value is a string, you must use double backslashes (\\) to escape

characters, such as \\n for a newline or \\uxxxx for a Unicode character.

File features
The following sections describe the way that some Android features are reflected in the manifest

file.

Intent filters
The core components of an application, such as its activities, services, and broadcast receivers, are

activated by intents. An intent is a bundle of information (an Intent (https://developer.android.com

/reference/android/content/Intent.html) object) describing a desired action, including the data to be

acted upon, the category of component that should perform the action, and other pertinent

instructions. The Android system locates an appropriate component that can respond to the intent,

launches a new instance of the component if one is needed, and passes it the IntentTake a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

7 von 11 17.11.2016 12:28

(https://developer.android.com/reference/android/content/Intent.html) object.

The components advertise the types of intents that they can respond to through intent filters. Since

the Android system must learn the intents that a component can handle before it launches the

component, intent filters are specified in the manifest as <intent-filter>

(https://developer.android.com/guide/topics/manifest/intent-filter-element.html) elements. A

component can have any number of filters, each one describing a different capability.

An intent that explicitly names a target component activates that component, so the filter doesn't

play a role. An intent that doesn't specify a target by name can activate a component only if it can

pass through one of the component's filters.

For information about how Intent (https://developer.android.com/reference/android/content

/Intent.html) objects are tested against intent filters, see the Intents and Intent Filters

(https://developer.android.com/guide/components/intents-filters.html) document.

Icons and labels
A number of elements have icon and label attributes for a small icon and a text label that can be

displayed to users. Some also have a description attribute for longer, explanatory text that can

also be shown on-screen. For example, the <permission> (https://developer.android.com/guide

/topics/manifest/permission-element.html) element has all three of these attributes so that when the

user is asked whether to grant the permission to an application that has requested it, an icon

representing the permission, the name of the permission, and a description of what it entails are all

presented to the user.

In every case, the icon and label that are set in a containing element become the default icon and

label settings for all of the container's subelements. Thus, the icon and label that are set in the

<application> (https://developer.android.com/guide/topics/manifest/application-element.html)

element are the default icon and label for each of the application's components. Similarly, the icon

and label that are set for a component, such as an <activity> (https://developer.android.com/guide

/topics/manifest/activity-element.html) element, are the default settings for each of the component's

<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-element.html)

elements. If an <application> (https://developer.android.com/guide/topics/manifest/application-

element.html) element sets a label, but an activity and its intent filter do not, the application label is

treated as the label for both the activity and the intent filter.

The icon and label that are set for an intent filter represent a component whenever the component

is presented to the user and fulfills the function that is advertised by the filter. For example, a filter

with android.intent.action.MAIN and android.intent.category.LAUNCHER settings

advertises an activity as one that initiates an application. That is, as one that should be displayed in

the application launcher. The icon and label that are set in the filter are displayed in the launcher.Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

8 von 11 17.11.2016 12:28

Permissions
A permission is a restriction that limits access to a part of the code or to data on the device. The

limitation is imposed to protect critical data and code that could be misused to distort or damage

the user experience.

Each permission is identified by a unique label. Often the label indicates the action that's restricted.

Here are some permissions that are defined by Android:

android.permission.CALL_EMERGENCY_NUMBERS

android.permission.READ_OWNER_DATA

android.permission.SET_WALLPAPER

android.permission.DEVICE_POWER

A feature can be protected by only one permission.

If an application needs access to a feature that is protected by a permission, it must declare that it

requires the permission with a <uses-permission> (https://developer.android.com/guide/topics

/manifest/uses-permission-element.html) element in the manifest. When the application is installed on

the device, the installer determines whether to grant the requested permission by checking the

authorities that signed the application's certificates and, in some cases, asking the user. If the

permission is granted, the application is able to use the protected features. If not, its attempts to

access those features fail without any notification to the user.

An application can also protect its own components with permissions. It can employ any of the

permissions that are defined by Android, as listed in android.Manifest.permission

(https://developer.android.com/reference/android/Manifest.permission.html), or declared by other

applications. It can also define its own. A new permission is declared with the <permission>

(https://developer.android.com/guide/topics/manifest/permission-element.html) element. For example,

an activity could be protected as follows:

<manifest . . . >
<permission android:name="com.example.project.DEBIT_ACCT" . . . />
<uses-permission android:name="com.example.project.DEBIT_ACCT" />

 . . .
<application . . .>

<activity android:name="com.example.project.FreneticActivity"
android:permission om.example.project.DEBIT_ACCT"

Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

9 von 11 17.11.2016 12:28

 . . . >
 . . .

</activity>
</application>

</manifest>

Note that, in this example, the DEBIT_ACCT permission is not only declared with the <permission>

(https://developer.android.com/guide/topics/manifest/permission-element.html) element, its use is also

requested with the <uses-permission> (https://developer.android.com/guide/topics/manifest/uses-

permission-element.html) element. You must request its use in order for other components of the

application to launch the protected activity, even though the protection is imposed by the

application itself.

If, in the same example shown above, the permission attribute was set to a permission that is

declared elsewhere, such as android.permission.CALL_EMERGENCY_NUMBERS, it would not be

necessary to declare it again with a <permission> (https://developer.android.com/guide/topics

/manifest/permission-element.html) element. However, it would still be necessary to request its use

with <uses-permission> (https://developer.android.com/guide/topics/manifest/uses-permission-

element.html).

The <permission-tree> (https://developer.android.com/guide/topics/manifest/permission-

tree-element.html) element declares a namespace for a group of permissions that are defined in

code, and the <permission-group> (https://developer.android.com/guide/topics/manifest

/permission-group-element.html) defines a label for a set of permissions, both those declared in the

manifest with <permission> (https://developer.android.com/guide/topics/manifest/permission-

element.html) elements and those declared elsewhere. This affects only how the permissions are

grouped when presented to the user. The <permission-group> (https://developer.android.com

/guide/topics/manifest/permission-group-element.html) element does not specify the permissions that

belong to the group, but it gives the group a name. You can place a permission in the group by

assigning the group name to the <permission> (https://developer.android.com/guide/topics/manifest

/permission-element.html) element's permissionGroup (https://developer.android.com/guide/topics

/manifest/permission-element.html#pgroup) attribute.

Libraries
Every application is linked against the default Android library, which includes the basic packages for

building applications (with common classes such as Activity, Service, Intent, View, Button,

Application, and ContentProvider).

However, some packages reside in their own libraries. If your application uses code from any of

these packages, it must explicitly ask to be linked against them. The manifest must contain a

separate <uses-library> (https://developer.android.com/guide/topics/manifest/uses-library-Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

10 von 11 17.11.2016 12:28

element.html) element to name each of the libraries. You can find the library name in the

documentation for the package.

Take a one-minute

App Manifest | Android Developers https://developer.android.com/guide/topics/mani...

11 von 11 17.11.2016 12:28

