diff --git a/python/w2v_cnn_gen_hdf5.py b/python/w2v_cnn_gen_hdf5.py index 20594e1731323970569994d166e7ac4b8673f424..fcaab9ff65224ebac49a86a6a638ef123c2dc4f4 100644 --- a/python/w2v_cnn_gen_hdf5.py +++ b/python/w2v_cnn_gen_hdf5.py @@ -10,16 +10,16 @@ from tensorflow.keras.layers import Conv1D,MaxPooling1D,GlobalMaxPooling1D from tensorflow import keras modelNN = Sequential() -#input_shape=((72, 100))) -modelNN.add(Conv1D(50,kernel_size=5, activation='relu',input_shape=((72, 100)))) +modelNN.add(Conv1D(150,kernel_size=5, activation='relu',input_shape=((72, 100)))) #modelNN.add(MaxPooling1D(pool_size=4)) #modelNN.add(Conv1D(250,kernel_size=4, activation='relu')) modelNN.add(MaxPooling1D(pool_size=4)) -modelNN.add(Conv1D(25,kernel_size=3, activation='relu')) +modelNN.add(Conv1D(100,kernel_size=3, activation='relu')) modelNN.add(MaxPooling1D(pool_size=4)) modelNN.add(Flatten()) -modelNN.add(Dense(25,activation='relu')) +modelNN.add(Dense(300,activation='relu')) +modelNN.add(Dense(100,activation='relu')) #modelNN.add(Dense(50,activation='relu')) modelNN.add(Dense(10,activation='relu')) modelNN.add(Dense(3,activation='softmax')) @@ -30,7 +30,7 @@ from hdf5 import hdf5Generator path = "G:\\ml\\" num_rows = 4.8E6 #num_rows = 1E5 -batchSize = 2048 +batchSize = 256 steps = num_rows/batchSize #early stop earlystop = keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_accuracy',patience=5,verbose=False,restore_best_weights=True) @@ -41,8 +41,8 @@ valData = hdf5Generator(path + "w2vCNN.hdf5", batchSize, "Val") #%% cW = {0:4.18,1:9.53,2:1.52} -hist = modelNN.fit(trainData, validation_data=valData, epochs=100,class_weight=cW, steps_per_epoch=steps, validation_steps=steps,callbacks=cbList) -modelNN.save("D:\\ml\\CNN-Classfication-5") +hist = modelNN.fit(trainData, validation_data=valData, epochs=100,class_weight=cW, steps_per_epoch=steps, validation_steps=int(steps/3),callbacks=cbList) +modelNN.save("D:\\ml\\CNN-Classfication-6") #modelNN.fit(train,epochs=12,validation_data=val,batch_size=batchSize,steps_per_epoch= num_rows/batchSize,callbacks=cbList,validation_steps=num_rows/batchSize) # %%eval testData = hdf5Generator(path + "w2vCNN.hdf5", batchSize, "Test",loop=False)