Skip to content
Snippets Groups Projects
Commit fade62f0 authored by Armin Co's avatar Armin Co
Browse files

Benchmarks for the OpenAiGym environment.

parent 6a28131a
No related branches found
No related tags found
No related merge requests found
import main
import environment_wrapper as ew
import gym
import copy
import threading
from agents import QAgent, DQAgent
c = ew.Config()
c.name = 'Base'
c.render = False
c.env = gym.make('LunarLander-v2')
c.env_type = 'Lunar'
c.net_layout = [256, 128]
c.eps_decay = 0.9996
c.learn_rate= 0.001
c.run_episodes = 300
c.save_to = 'benchmarks/'
smallNet = copy.deepcopy(c)
smallNet.name = 'SmallNet'
smallNet.net_layout = [128, 32]
smallNet.conf_to_name()
# smallNet.agent = QAgent(smallNet)
smallNetDeep = copy.deepcopy(c)
smallNetDeep.name = 'SmallNetDeep'
smallNetDeep.net_layout = [128, 32, 32]
smallNetDeep.conf_to_name()
smallNetDeepSlowLearn = copy.deepcopy(c)
smallNetDeepSlowLearn.name = 'SmallNetDeep'
smallNetDeepSlowLearn.net_layout = [128, 32, 32]
smallNetDeepSlowLearn.learn_rate = 0.0005
smallNetDeepSlowLearn.conf_to_name()
normalNet = copy.deepcopy(c)
normalNet.name = 'NormalNet'
normalNet.net_layout = [256, 128]
normalNet.conf_to_name()
normalSlowDecay = copy.deepcopy(c)
normalSlowDecay.name = 'NormalSlowDecay'
normalSlowDecay.net_layout = [256, 128]
normalSlowDecay.eps_decay = 0.99995
normalSlowDecay.conf_to_name()
normalSlowLearn = copy.deepcopy(c)
normalSlowLearn.name = 'NormalSlowLearn'
normalSlowLearn.net_layout = [256, 128]
normalSlowLearn.learn_rate = 0.0005
normalSlowLearn.conf_to_name()
largeNet = copy.deepcopy(c)
largeNet.name = 'LargeNet'
largeNet.net_layout = [512, 256]
largeNet.conf_to_name()
deepNet = copy.deepcopy(c)
deepNet.name = 'DeppNet'
deepNet.net_layout = [256, 128, 128]
deepNet.conf_to_name()
deepNetSlowLearn = copy.deepcopy(c)
deepNetSlowLearn.name = 'DeppNet'
deepNetSlowLearn.net_layout = [256, 128, 128]
deepNetSlowLearn.learn_rate = 0.0005
deepNetSlowLearn.conf_to_name()
deepNetSmaller = copy.deepcopy(c)
deepNetSmaller.name = 'DeppNetSmaller'
deepNetSmaller.net_layout = [256, 128, 32]
deepNetSmaller.conf_to_name()
littleNet = copy.deepcopy(c)
littleNet.name = 'LittleNet'
littleNet.net_layout = [64, 64]
littleNet.conf_to_name()
verryLittleNet = copy.deepcopy(c)
verryLittleNet.name = 'VerryLittleNet'
verryLittleNet.net_layout = [64, 32]
verryLittleNet.conf_to_name()
verryLittleNetDeep = copy.deepcopy(c)
verryLittleNetDeep.name = 'VerryLittleNetDeep'
verryLittleNetDeep.net_layout = [64, 32, 32]
verryLittleNetDeep.conf_to_name()
lun = copy.deepcopy(c)
lun.run_episodes = 500
lun.name = 'NormalLunarDoubleNotSoMoreLearn'
lun.net_layout = [256, 128]
lun.conf_to_name()
# lun.agent = QAgent(lun)
# configuration = smallNet
# configuration = smallNetDeep
configuration = normalNet
# configuration = normalSlowDecay
# configuration = normalSlowLearn
# configuration = largeNet
# configuration = deepNet
# configuration = deepNetSmaller
# configuration = verryLittleNet
# configuration = littleNet
# configuration = verryLittleNetDeep
# configuration = deepNetSlowLearn
# configuration = smallNetDeepSlowLearn
# configuration = lun
print(configuration.name)
configuration.agent = QAgent(configuration)
main.run(configuration)
# configurations = [smallNet, smallNetDeep, normalNet, normalSlowDecay, normalSlowLearn, largeNet, deepNet, verryLittleNet, littleNet, verryLittleNetDeep, smallNetDeepSlowLearn, deepNetSlowLearn]
# threads = []
# for conf in configurations:
# threads.append(threading.Thread(target=main.run, args=[conf]))
# for thread in threads:
# thread.start()
# for thread in threads:
# thread.join()
\ No newline at end of file
import main
import environment_wrapper as ew
import gym
from agents import DQAgent, QAgent
c = ew.Config()
c.name = 'DoubleCartPole'
c.render = False
c.env = gym.make('CartPole-v0')
c.env_type = 'CartPole'
c.net_layout = [128, 64, 32]
c.eps_decay = 0.9991
c.learn_rate= 0.001
c.run_episodes = 300
c.save_to = 'benchmarks/'
c.conf_to_name()
c.agent = QAgent(c)
main.run(c)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment