Skip to content
Snippets Groups Projects
Commit 105d1deb authored by Peter Gerwinski's avatar Peter Gerwinski
Browse files

Vorbereitung 17.12.2015

parent 56be24e2
Branches
No related tags found
No related merge requests found
# Hey Emacs, this is a -*- makefile -*-
###############################################################################
# RP6 MAKEFILE FOR WinAVR
# Based on WinAVR Sample makefile written by Eric B. Weddington,
# Jörg Wunsch, et al.
#
#
# YOU NEED TO EDIT SOME SMALL THINGS IN THIS FILE IF YOU WANT TO USE
# IT FOR YOUR OWN PROJECTS!
# THESE LINES ARE ALL AT THE TOP OF THIS FILE AND MARKED VERY CLEARLY !
# BETTER DO NOT EDIT ANYTHING ELSE!
#
# To compile everything you can simply type "make all" on a command line in
# this directory or simply use the supplied batch files!
# To remove all the temporary files the compiler has generated you can use
# "make clean"
# See end of this file and "make" user manual for more details!
#
#
# Note: Everything behind a '#' is interpreted as a comment in this file!
#
###############################################################################
###############################################################################
# Target file name (without extension).
# This is the name of your main C source file! Do NOT append the ".c"!
# Example: Let's assume your main source file is "RP6Base_MyProgram.c", then
# you would write: TARGET = RP6Base_MyProgram
TARGET = blink-5
###############################################################################
###############################################################################
# Specify relative path to RP6 library files here.
# This is "../lib" usually.
RP6_LIB_PATH=../RP6Lib
RP6_LIB_PATH_OTHERS= $(RP6_LIB_PATH)/RP6base $(RP6_LIB_PATH)/RP6common
###############################################################################
#------------------------------------------------
# Main Source file is _automatically_ added here:
SRC = $(TARGET).c
###############################################################################
# If there is more than one source file, append them here separated by spaces.
# Usually you have to add the Library files here! (ONLY add c files "*.c" here,
# NO header files "*.h"!)
# Don't forget to add relative paths!
#SRC += $(RP6_LIB_PATH)/RP6base/RP6RobotBaseLib.c
#SRC += $(RP6_LIB_PATH)/RP6common/RP6uart.c
##SRC += $(RP6_LIB_PATH)/RP6common/RP6I2CmasterTWI.c
# You can also wrap lines by appending a backslash to the end of the line
# like this:
#SRC += xyz.c \
#abc.c \
#asdf.c
#
###############################################################################
###############################################################################
# Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s
###############################################################################
# #
#-----------------------------------------------------------------------------#
###############################################################################
######-------------------------------------------------------------------######
###### DO NOT EDIT ANYTHING BELOW IF YOU DO NOT KNOW WHAT YOU ARE DOING! ######
######-------------------------------------------------------------------######
###############################################################################
#-----------------------------------------------------------------------------#
# #
# MCU name - atmega32 for RP6 Base and Processor Expansion
MCU = atmega32
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =
# Debugging format.
# Native formats for AVR-GCC's -g are dwarf-2 [default] or stabs.
# AVR Studio 4.10 requires dwarf-2.
# AVR [Extended] COFF format requires stabs, plus an avr-objcopy run.
DEBUG = dwarf-2
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS = $(RP6_LIB_PATH) $(RP6_LIB_PATH_OTHERS)
# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=gnu99
# DO NOT USE THIS FOR RP6 PROJECTS!
#
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
# F_CPU = 8000000
# Place -D or -U options here
CDEFS = -DDEBUG_MEASURE_DUTY_CYCLE
# -DF_CPU=$(F_CPU)UL
# uncommented - caused a compile problem.
# Place -I options here
CINCS =
#---------------- Compiler Options ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CFLAGS = -g$(DEBUG)
CFLAGS += $(CDEFS) $(CINCS)
CFLAGS += -O$(OPT)
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
CFLAGS += -Wall -Wstrict-prototypes -Werror
CFLAGS += -Wa,-adhlns=$(<:.c=.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD)
#---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -ahlms: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs,--listing-cont-lines=100
#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)
# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)
MATH_LIB = -lm
#---------------- External Memory Options ----------------
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff
EXTMEMOPTS =
#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#---------------- Programming Options (avrdude) ----------------
# Programming hardware: alf avr910 avrisp bascom bsd
# dt006 pavr picoweb pony-stk200 sp12 stk200 stk500
#
# Type: avrdude -c ?
# to get a full listing.
#
AVRDUDE_PROGRAMMER = stk500
# com1 = serial port. Use lpt1 to connect to parallel port.
AVRDUDE_PORT = com1 # programmer connected to serial device
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y
# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V
# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS += $(AVRDUDE_NO_VERIFY)
AVRDUDE_FLAGS += $(AVRDUDE_VERBOSE)
AVRDUDE_FLAGS += $(AVRDUDE_ERASE_COUNTER)
#---------------- Debugging Options ----------------
# For simulavr only - target MCU frequency.
DEBUG_MFREQ = $(F_CPU)
# Set the DEBUG_UI to either gdb or insight.
# DEBUG_UI = gdb
DEBUG_UI = insight
# Set the debugging back-end to either avarice, simulavr.
DEBUG_BACKEND = avarice
#DEBUG_BACKEND = simulavr
# GDB Init Filename.
GDBINIT_FILE = __avr_gdbinit
# When using avarice settings for the JTAG
JTAG_DEV = /dev/com1
# Debugging port used to communicate between GDB / avarice / simulavr.
DEBUG_PORT = 4242
# Debugging host used to communicate between GDB / avarice / simulavr, normally
# just set to localhost unless doing some sort of crazy debugging when
# avarice is running on a different computer.
DEBUG_HOST = localhost
#============================================================================
# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
NM = avr-nm
AVRDUDE = avrdude
REMOVE = rm -f
REMOVEDIR = rmdir
COPY = cp
WINSHELL = cmd
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
# Define all object files.
OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)
# Define all listing files.
LST = $(SRC:.c=.lst) $(ASRC:.S=.lst)
# Compiler flags to generate dependency files.
GENDEPFLAGS = -MD -MP -MF .dep/$(@F).d
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) $(GENDEPFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: begin gccversion sizebefore build sizeafter end
build: elf hex eep lss sym
elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym
# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)
end:
@echo $(MSG_END)
@echo
# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) --format=avr --mcu=$(MCU) $(TARGET).elf
sizebefore:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); \
2>/dev/null; echo; fi
sizeafter:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); \
2>/dev/null; echo; fi
# Display compiler version information.
gccversion :
@$(CC) --version
# Program the device.
program: $(TARGET).hex $(TARGET).eep
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
# Generate avr-gdb config/init file which does the following:
# define the reset signal, load the target file, connect to target, and set
# a breakpoint at main().
gdb-config:
@$(REMOVE) $(GDBINIT_FILE)
@echo define reset >> $(GDBINIT_FILE)
@echo SIGNAL SIGHUP >> $(GDBINIT_FILE)
@echo end >> $(GDBINIT_FILE)
@echo file $(TARGET).elf >> $(GDBINIT_FILE)
@echo target remote $(DEBUG_HOST):$(DEBUG_PORT) >> $(GDBINIT_FILE)
ifeq ($(DEBUG_BACKEND),simulavr)
@echo load >> $(GDBINIT_FILE)
endif
@echo break main >> $(GDBINIT_FILE)
debug: gdb-config $(TARGET).elf
ifeq ($(DEBUG_BACKEND), avarice)
@echo Starting AVaRICE - Press enter when "waiting to connect" message displays.
@$(WINSHELL) /c start avarice --jtag $(JTAG_DEV) --erase --program --file \
$(TARGET).elf $(DEBUG_HOST):$(DEBUG_PORT)
@$(WINSHELL) /c pause
else
@$(WINSHELL) /c start simulavr --gdbserver --device $(MCU) --clock-freq \
$(DEBUG_MFREQ) --port $(DEBUG_PORT)
endif
@$(WINSHELL) /c start avr-$(DEBUG_UI) --command=$(GDBINIT_FILE)
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: $(TARGET).elf
@echo
@echo $(MSG_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-avr $< $(TARGET).cof
extcoff: $(TARGET).elf
@echo
@echo $(MSG_EXTENDED_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
@echo
@echo $(MSG_FLASH) $@
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
%.eep: %.elf
@echo
@echo $(MSG_EEPROM) $@
-$(OBJCOPY) -j .eeprom --set-section-flags .eeprom=alloc,load \
--change-section-lma .eeprom=0 --no-change-warnings -O $(FORMAT) $< $@ || exit 0
# Create extended listing file from ELF output file.
%.lss: %.elf
@echo
@echo $(MSG_EXTENDED_LISTING) $@
$(OBJDUMP) -h -S $< > $@
# Create a symbol table from ELF output file.
%.sym: %.elf
@echo
@echo $(MSG_SYMBOL_TABLE) $@
$(NM) -n $< > $@
# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo
@echo $(MSG_LINKING) $@
$(CC) $(ALL_CFLAGS) $^ --output $@ $(LDFLAGS)
# Compile: create object files from C source files.
%.o : %.c
@echo
@echo $(MSG_COMPILING) $<
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C source files.
%.s : %.c
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Create preprocessed source for use in sending a bug report.
%.i : %.c
$(CC) -E -mmcu=$(MCU) -I. $(CFLAGS) $< -o $@
# Target: clean project.
clean: begin clean_list end
clean_list :
@echo
@echo $(MSG_CLEANING)
# We want to keep the generated hexfiles:
# $(REMOVE) $(TARGET).hex
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lss
$(REMOVE) $(OBJ)
$(REMOVE) $(LST)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) $(SRC:.c=.i)
$(REMOVE) .dep/*
$(REMOVEDIR) .dep
# Include the dependency files.
include $(shell mkdir .dep 2>/dev/null) $(wildcard .dep/*)
# Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff \
clean clean_list program debug gdb-config
###############################################################################
# Based on WinAVR Sample makefile written by Eric B. Weddington,
# Jörg Wunsch, et al.
# Released to the Public Domain.
# Please read the "make" user manual!
#
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device, using avrdude.
# Please customize the avrdude settings first!
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#
###############################################################################
No preview for this file type
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
\section*{Angewandte Informatik\\Übungsaufgaben -- 10.\ Dezember 2015} \section*{Angewandte Informatik\\Übungsaufgaben -- 10.\ Dezember 2015}
\exercise{Bit-Array} \subsection*{Bit-Array}
Schreiben Sie C-Funktionen, die ein "`Array von Bits"' realisieren, z.\,B.: Schreiben Sie C-Funktionen, die ein "`Array von Bits"' realisieren, z.\,B.:
...@@ -75,6 +75,8 @@ ...@@ -75,6 +75,8 @@
Sie benötigen eine Division (\lstinline|/|) sowie den Divisionsrest (Modulo: \lstinline|%|). Sie benötigen eine Division (\lstinline|/|) sowie den Divisionsrest (Modulo: \lstinline|%|).
\end{itemize} \end{itemize}
\iffalse
\exercise{Arrays mit Zahlen} \exercise{Arrays mit Zahlen}
\begin{minipage}[t]{0.5\textwidth} \begin{minipage}[t]{0.5\textwidth}
...@@ -148,4 +150,6 @@ ...@@ -148,4 +150,6 @@
\end{enumerate} \end{enumerate}
\end{minipage} \end{minipage}
\fi
\end{document} \end{document}
#include <avr/io.h>
#define F_CPU 8000000
#include <util/delay.h>
int main (void)
{
DDRC = 0x70;
PORTC &= ~0x70;
while (1)
{
PORTC ^= 0x70;
_delay_ms (500);
}
return 0;
}
#include <avr/io.h>
#include <avr/interrupt.h>
ISR (TIMER0_COMP_vect)
{
static int counter = 0;
if (counter++ > 1000)
{
PORTB ^= 0x83;
counter = 0;
}
}
int main (void)
{
cli ();
TCCR0 = (1 << CS01) | (0 << CS00);
TIMSK = 1 << OCIE0;
sei ();
DDRB = 0x83;
PORTB = 0;
while (1);
return 0;
}
#include <stdio.h>
#include <stdint.h>
int main (void)
{
union {
uint8_t byte;
struct {
unsigned LEDsR:3;
unsigned LEDsL:3;
unsigned reserved:2;
};
struct {
unsigned LED1:1;
unsigned LED2:1;
unsigned LED3:1;
unsigned LED4:1;
unsigned LED5:1;
unsigned LED6:1;
unsigned reserved1:1;
unsigned reserved2:1;
};
} statusLEDs;
printf ("%d %d %d %d %d %d\n", statusLEDs.LED1, statusLEDs.LED2, statusLEDs.LED3,
statusLEDs.LED4, statusLEDs.LED5, statusLEDs.LED6);
printf ("%d %d\n", statusLEDs.LEDsR, statusLEDs.LEDsL);
statusLEDs.byte = 0x38;
printf ("%d %d %d %d %d %d\n", statusLEDs.LED1, statusLEDs.LED2, statusLEDs.LED3,
statusLEDs.LED4, statusLEDs.LED5, statusLEDs.LED6);
printf ("%d %d\n", statusLEDs.LEDsR, statusLEDs.LEDsL);
return 0;
}
File added
% ainf-20151217.pdf - Lecture Slides on Applied Computer Sciences
% Copyright (C) 2012, 2013, 2015 Peter Gerwinski
%
% This document is free software: you can redistribute it and/or
% modify it either under the terms of the Creative Commons
% Attribution-ShareAlike 3.0 License, or under the terms of the
% GNU General Public License as published by the Free Software
% Foundation, either version 3 of the License, or (at your option)
% any later version.
%
% This document is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this document. If not, see <http://www.gnu.org/licenses/>.
%
% You should have received a copy of the Creative Commons
% Attribution-ShareAlike 3.0 Unported License along with this
% document. If not, see <http://creativecommons.org/licenses/>.
\documentclass[10pt,t]{beamer}
\usepackage{pgslides}
\usepackage{pdftricks}
\usepackage{rotating}
\newrgbcolor{orange}{0.7 0.2 0.0}
\begin{psinputs}
\usepackage[utf8]{inputenc}
\usepackage[german]{babel}
\usepackage[T1]{fontenc}
\usepackage{helvet}
\renewcommand*\familydefault{\sfdefault}
\usepackage{pstricks,pst-grad,pst-node,pst-plot}
\end{psinputs}
\lstdefinestyle{asm}{basicstyle=\color{structure},
language={},
gobble=4}
\title{Angewandte Informatik}
\author{Prof.\ Dr.\ rer.\ nat.\ Peter Gerwinski}
\date{17.\ Dezember 2015}
\begin{document}
\maketitleframe
\sectionnonumber{\inserttitle}
\begin{frame}
\showsectionnonumber
\begin{itemize}
\item[\textbf{1}] \textbf{Einführung}
\item[\textbf{2}] \textbf{Einführung in C}
\item[\textbf{3}] \textbf{Bibliotheken}
\item[\textbf{4}] \textbf{Algorithmen}
\begin{itemize}
\item[4.1] Differentialgleichungen
\item[4.2] Rekursion
\item[4.3] Stack und FIFO
\color{red}
\item[4.4] Aufwandsabschätzungen
\end{itemize}
\item[\textbf{5}] \textbf{Hardwarenahe Programmierung}
\begin{itemize}
\color{medgreen}
\item[5.1] Bit-Operationen
\item[5.2] I/O-Ports
\item[5.3] Interrupts
\color{red}
\item[5.4] volatile-Variable
\color{black}
\item[5.5] Software-Interrupts
\item[\dots]
\end{itemize}
\color{gray}
\item[\makebox(0,0){\textbf{\raisebox{0.5ex}{\dots}}}]
% \item[\textbf{6}] \textbf{Ergänzungen und Ausblicke}
\end{itemize}
\end{frame}
\section{Einführung}
\section{Einführung in C}
\section{Bibliotheken}
\section{Algorithmen}
\section{Hardwarenahe Programmierung}
\subsection{Bit-Operationen}
\subsubsection{Zahlensysteme}
\begin{frame}[fragile]
\showsection
\vspace*{-\smallskipamount}
\showsubsection
\vspace*{-\medskipamount}
\showsubsubsection
Oktal- und Hexadezimal-Zahlen lassen sich ziffernweise\\
in Binär-Zahlen umrechnen:
\begin{verbatim}
000 0 0000 0 1000 8
001 1 0001 1 1001 9
010 2 0010 2 1010 A
011 3 0011 3 1011 B
100 4 0100 4 1100 C
101 5 0101 5 1101 D
110 6 0110 6 1110 E
111 7 0111 7 1111 F
\end{verbatim}
\begin{picture}(0,0)
\put(8,3){\begin{rotate}{15}
\color{red}\bf
Auswendig lernen!
\end{rotate}}
\end{picture}
\end{frame}
\subsubsection{Bit-Operationen in C}
\begin{frame}[fragile]
\showsubsubsection
\begin{tabular}{lll}
C-Operator & Verknüpfung & Anwendung \\[\smallskipamount]
\lstinline,&, & Und & Bits gezielt löschen \\
\lstinline,|, & Oder & Bits gezielt setzen \\
\lstinline,^, & Exklusiv-Oder & Bits gezielt invertieren \\
\lstinline,~, & Nicht & Alle Bits invertieren \\[\smallskipamount]
\lstinline,<<, & Verschiebung nach links & Maske generieren \\
\lstinline,>>, & Verschiebung nach rechts & Bits isolieren
\end{tabular}
\bigskip
Beispiele:
\begin{itemize}
\item
Bit Nr.\ 5 gezielt auf 1 setzen:
\lstinline{PORTB |= 1 << 5;}
\item
Bit Nr.\ 6 gezielt auf 0 setzen:
\lstinline{PORTA &= ~(1 << 6);}
\item
Ist Bit Nr.\ 4 gesetzt?
\lstinline{if (PINC & (1 << 4) ...}
\smallskip
\item
Umschalten zwischen Ein- und Ausgabe: \lstinline{DDR}\\
Bit = 1: Ausgabe; Bit = 0: Eingabe
\end{itemize}
\begin{picture}(0,0)
\put(8.4,1){\begin{rotate}{15}
\color{red}\bf
\shortstack{Details abhängig von\\Prozessor und Compiler!}
\end{rotate}}
\end{picture}
\end{frame}
\subsection{I/O-Ports}
\begin{frame}[fragile]
% \showsection
\showsubsection
\vspace*{-1.5\medskipamount}
{\large\textbf{\color{structure}5.3\quad Interrupts}}
\bigskip
Kommunikation mit externen Geräten
\bigskip
\begin{center}
\begin{pdfpic}
\psset{unit=1cm}%
\begin{pspicture}(0,0)(10,6)
\rput(0,0){\psframe[framearc=0.25](2,5)}
\rput(1,4.5){\makebox(0,0)[t]{Prozessor}}
\rput(2.0,3.7){\pnode{p0}}
\rput(2.0,3.3){\pnode{q0}}
\rput(2.0,1.0){\pnode{i0}}
\rput(2.12,1.2){\pnode{j0}}
\rput(2.02,1.3){\pnode{k0}}
\rput(2.12,1.4){\pnode{l0}}
\rput(3.5,1.4){\pnode{m0}}
\rput(8,0){\psframe[framearc=0.25](2,5)}
\rput(9,4.5){\makebox(0,0)[t]{\shortstack{externes\\Gerät}}}
\rput(8.0,3.7){\pnode{p1}}
\rput(7.88,3.3){\pnode{q1}}
\rput(7.98,3.2){\pnode{r1}}
\rput(7.88,3.1){\pnode{s1}}
\rput(6.5,3.1){\pnode{t1}}
\rput(8.0,1.0){\pnode{i1}}
\rput(8.0,1.2){\pnode{j1}}
\ncline{->}{p0}{p1}
\ncline{q0}{q1}
\nccurve[angleB=90]{q1}{r1}
\nccurve[angleA=-90]{r1}{s1}
\ncline{->}{s1}{t1}
\rput(2.2,3.8){\makebox(0,0)[lb]{Prozessor schreibt in Output-Port}}
\rput(2.2,3.1){\makebox(0,0)[lt]{Prozessor liest Input-Port}}
\ncline{->}{i1}{i0}
\rput(7.8,1.1){\makebox(0,0)[rb]{externes Gerät ruft Interrupt auf}}
\end{pspicture}
\end{pdfpic}
\end{center}
\end{frame}
\begin{frame}[fragile]
\showsubsection
In Output-Port schreiben = Leitungen ansteuern
\begin{tabbing}
Datei: \= \file{RP6Base/RP6Base\_Examples/RP6Examples\_20080915/}\\
\> \file{RP6Lib/RP6base/RP6RobotBaseLib.c}
\end{tabbing}
\begin{onlyenv}<1>
Suchbegriff: \lstinline{setMotorDir}
\medskip
\begin{lstlisting}[gobble=6]
void setMotorDir(uint8_t left_dir, uint8_t right_dir)
{
/* ... */
if(left_dir)
PORTC |= DIR_L;
else
PORTC &= ~DIR_L;
if(right_dir)
PORTC |= DIR_R;
else
PORTC &= ~DIR_R;
}
\end{lstlisting}
\begin{picture}(0,0)
\color{red}
\put(2.2,0.50){\vector(-2,1){0.5}}
\put(2.25,0.40){\makebox(0,0)[l]{Output-Port}}
\put(4.7,3.0){\vector(-2,1){0.75}}
\put(4.7,3.0){\vector(-2,-1){0.75}}
\put(4.8,3.0){\makebox(0,0)[l]{Manipulation einzelner Bits}}
\end{picture}
\vspace*{-1.5cm}
\strut\hfill\textarrow\ Steuerung der Motordrehrichtung
\end{onlyenv}
\begin{onlyenv}<2>
Suchbegriff: \lstinline{updateStatusLEDs}
\medskip
\begin{lstlisting}[gobble=6]
DDRB &= ~0x83;
PORTB &= ~0x83;
if(statusLEDs.LED4){ DDRB |= SL4; PORTB |= SL4; }
if(statusLEDs.LED5){ DDRB |= SL5; PORTB |= SL5; }
if(statusLEDs.LED6){ DDRB |= SL6; PORTB |= SL6; }
DDRC &= ~0x70;
PORTC &= ~0x70;
DDRC |= ((statusLEDs.byte << 4) & 0x70);
PORTC |= ((statusLEDs.byte << 4) & 0x70);
\end{lstlisting}
\begin{picture}(0,0)
\color{red}
\put(3.7,3.9){\vector(-1,0){0.5}}
\put(3.75,3.9){\makebox(0,0)[l]{Data Direction Register: auf Input(!) setzen}}
\put(3.7,3.5){\vector(-1,0){0.5}}
\put(3.75,3.5){\makebox(0,0)[l]{internen Pull-Up-Widerstand ausschalten}}
\put(8.7,2.7){\makebox(0,0)[l]{\shortstack{Manipulation\\einzelner Bits}}}
\put(7.2,1.0){\makebox(0,0)[l]{\shortstack{3 Bits\\gemeinsam}}}
\end{picture}
\lstinline{union statusLEDs}: Bit-Felder vs.\ Byte
\end{onlyenv}
\end{frame}
\subsection{Interrupts}
\begin{frame}[fragile]
\showsubsection
Externes Gerät ruft (per Stromsignal) Unterprogramm auf
Zeiger hinterlegen: "`Interrupt-Vektor"'
\medskip
Datei: \file{RP6Base/RP6Base\_Examples/RP6Examples\_20080915/\\
RP6Lib/RP6base/RP6RobotBaseLib.c}
Suchbegriff: \lstinline{ISR}
\vspace{2.0cm}
\begin{lstlisting}
ISR (INT0_vect)
{
mleft_dist++;
mleft_counter++;
/* ... */
}
\end{lstlisting}
\begin{picture}(0,0)
\color{red}
\put(1.9,4.3){\vector(-1,-1){1.4}}
\put(2.0,4.4){\makebox(0,0)[l]{"`Dies ist ein Interrupt-Handler."'}}
\put(2.3,3.6){\vector(-1,-1){0.7}}
\put(2.4,3.6){\makebox(0,0)[l]{Interrupt-Vektor 0 darauf zeigen lassen}}
\put(3.7,2.9){\makebox(0,0)[l]{Schreibweise abhängig von Prozessor und Compiler!}}
\end{picture}
\vspace*{-1.5cm}
\strut\hfill Aufruf durch Sensor an Encoder-Scheibe\\
\strut\hfill\textarrow\ Entfernungsmessung
\end{frame}
\subsection{volatile-Variable}
\begin{frame}[fragile]
\showsubsection
\begin{lstlisting}
volatile uint16_t mleft_counter;
/* ... */
volatile uint16_t mleft_dist;
/* ... */
ISR (INT0_vect)
{
mleft_dist++;
mleft_counter++;
/* ... */
}
\end{lstlisting}
\begin{picture}(0,0)
\color{red}
\put(1.6,5.2){\vector(-1,-1){0.55}}
\put(1.6,5.2){\vector(-1,1){0.55}}
\put(1.6,5.2){\makebox(0,0)[l]{"`Immer lesen und schreiben. Nicht wegoptimieren."'}}
\end{picture}
\vspace{-3cm}
\begin{lstlisting}
int main (void)
{
int prev_mleft_dist = mleft_dist;
while (mleft_dist == prev_mleft_dist)
/* just wait */;
}
\end{lstlisting}
\end{frame}
\iffalse
\subsection{Software-Interrupts}
\begin{frame}[fragile]
\showsubsection
\begin{lstlisting}[style=asm]
mov ax, 0012
int 10
\end{lstlisting}
\pause
\begin{picture}(0,0)
\color{red}
\put(2.8,0.95){\vector(-1,0){0.55}}
\put(2.9,0.95){\makebox(0,0)[l]{Parameter in Prozessorregister}}
\put(1.7,0.50){\vector(-1,0){0.55}}
\put(1.8,0.50){\makebox(0,0)[l]{Funktionsaufruf über Interrupt-Vektor}}
\end{picture}
\pause
Beispiel: VGA-Grafikkarte
\begin{itemize}
\item Modus setzen: \lstinline{mov ah, 00}
\item Grafikmodus: \lstinline{mov al, 12}
\item Textmodus: \lstinline{mov al, 03}
\end{itemize}
\pause
\bigskip
Verschiedene Farben: Output-Ports
\begin{itemize}
\item \newterm{Graphics Register\/}: Index \lstinline{03CE}, Daten \lstinline{03CF}
\item Index 0: \newterm{Set/Reset Register}
\item Index 1: \newterm{Enable Set/Reset Register}
\item Index 8: \newterm{Bit Mask Register}
\item Jedes Bit steht für Schreibzugriff auf eine Speicherbank.
\item 4 Speicherbänke \textarrow\ 16 Farben
\end{itemize}
\end{frame}
\fi
\subsection{Aufwandsabschätzungen}
\begin{frame}[fragile]
\showsubsection
Beispiel: Sortieralgorithmen
\begin{itemize}
\item
Maximum suchen\only<2->{: $\mathcal{O}(n)$}
\hfill
\begin{minipage}[t]{5.6cm}
\vspace*{-1.3cm}
\begin{pdfpic}
\psset{unit=0.5pt}
\begin{pspicture}(-20,-20)(250,200)
\psline[arrows=->](-10,0)(200,0)
\psline[arrows=->](0,-10)(0,200)
\psplot[plotpoints=200]{1}{125}{2 x 0.06 mul exp}
\put(70,190){\mbox{$g(n) \sim 2^n$}}
\psplot[plotpoints=200]{0}{190}{x x mul 0.005 mul}
\put(190,190){\mbox{$g(n) \sim n^2$}}
\psplot[plotpoints=200]{1}{190}{x ln x mul 0.1 mul}
\put(195,100){\mbox{$g(n) \sim n \log n$}}
\psplot[plotpoints=200]{0}{190}{x 0.4 mul}
\put(195,75){\mbox{$g(n) \sim n$}}
\psplot[plotpoints=200]{1}{190}{x ln 10 mul}
\put(195,50){\mbox{$g(n) \sim \log n$}}
\put(205,0){\makebox(0,0)[l]{$n$}}
\put(-10,210){\makebox(0,0)[l]{$g(n)$}}
\psplot[plotpoints=200]{1}{190}{30}
\put(195,25){\mbox{$g(n) \sim 1$}}
\end{pspicture}
\end{pdfpic}
\small
\begin{description}\itemsep0pt
\item[$n$:] Eingabedaten
\item[$g(n)$:] Rechenzeit
\end{description}
\vspace*{-10cm}\strut
\end{minipage}
\pause[3]
\item
Maximum ans Ende tauschen\\
\textarrow\ Selectionsort\pause: $\mathcal{O}(n^2)$
\pause
\item
Während Maximumsuche prüfen,\\abbrechen, falls schon sortiert\\
\textarrow\ Bubblesort\pause: $\mathcal{O}(n)$ bis $\mathcal{O}(n^2)$
\pause
\item
Rekursiv sortieren\\
\textarrow\ Quicksort\pause: $\mathcal{O}(n\log n)$ bis $\mathcal{O}(n^2)$\hfill
\end{itemize}
\end{frame}
\sectionnonumber{\inserttitle}
\begin{frame}
\showsectionnonumber
\begin{itemize}
\item[\textbf{1}] \textbf{Einführung}
\item[\textbf{2}] \textbf{Einführung in C}
\item[\textbf{3}] \textbf{Bibliotheken}
\item[\textbf{4}] \textbf{Algorithmen}
\begin{itemize}
\item[4.1] Differentialgleichungen
\item[4.2] Rekursion
\item[4.3] Stack und FIFO
\color{medgreen}
\item[4.4] Aufwandsabschätzungen
\end{itemize}
\item[\textbf{5}] \textbf{Hardwarenahe Programmierung}
\begin{itemize}
\color{medgreen}
\item[5.1] Bit-Operationen
\item[5.2] I/O-Ports
\item[5.3] Interrupts
\item[5.4] volatile-Variable
\color{black}
\item[5.5] Software-Interrupts
\item[\dots]
\end{itemize}
\color{gray}
\item[\makebox(0,0){\textbf{\raisebox{0.5ex}{\dots}}}]
% \item[\textbf{6}] \textbf{Ergänzungen und Ausblicke}
\end{itemize}
\end{frame}
\end{document}
File added
% ainf-uebung-20151217.pdf - Exercises on Applied Computer Sciences
% Copyright (C) 2013, 2015 Peter Gerwinski
%
% This document is free software: you can redistribute it and/or
% modify it either under the terms of the Creative Commons
% Attribution-ShareAlike 3.0 License, or under the terms of the
% GNU General Public License as published by the Free Software
% Foundation, either version 3 of the License, or (at your option)
% any later version.
%
% This document is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this document. If not, see <http://www.gnu.org/licenses/>.
%
% You should have received a copy of the Creative Commons
% Attribution-ShareAlike 3.0 Unported License along with this
% document. If not, see <http://creativecommons.org/licenses/>.
\documentclass[a4paper]{article}
\usepackage{pgscript}
\usepackage{enumerate}
\usepackage{pdftricks}
\usepackage{sfmath}
\begin{psinputs}
\usepackage{pgscript}
% \definecolor{PracticallyWhite}{rgb}{0.99 0.99 0.99}
\definecolor{verylightgray}{rgb}{0.95 0.95 0.95}
\end{psinputs}
\newcounter{exercise}
\newcommand{\exercise}[1]{\addtocounter{exercise}{1}\subsection*{Aufgabe \arabic{exercise}: #1}}
\newcounter{points}
\newcommand{\onepoint}{(1 Punkt)\addtocounter{points}{1}}
\newcommand{\points}[1]{(#1 Punkte)\addtocounter{points}{#1}}
\begin{document}
\thispagestyle{empty}
\section*{Angewandte Informatik\\Übungsaufgaben -- 17.\ Dezember 2015}
\subsection*{Arrays mit Zahlen}
\begin{minipage}[t]{0.5\textwidth}
Wir betrachten das folgende Programm:
\begin{lstlisting}[gobble=6]
#include <stdio.h>
void f (int *s0, int *s1)
{
while (*s0 >= 0)
{
int *s = s1;
while (*s >= 0)
if (*s0 == *s++)
printf ("%d ", *s0);
s0++;
}
printf ("\n");
}
int main (void)
{
int a[] = { 10, 4, 3, 7, 12, 0, 1, -1 };
int b[] = { 7, 14, 0, 8, 9, 22, 10, -1 };
f (a, b);
return 0;
}
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}[t]{0.5\textwidth}
\vspace*{-\bigskipamount}
\begin{enumerate}[\quad(a)]
\item
Was bewirkt die Funktion \lstinline{f} und warum?\\
\points{4}
\item
Von welcher Ordnung (Landau-Symbol) ist die Funktion und warum?
Wir beziehen uns hierbei auf die Anzahl der Vergleiche
in Abhängigkeit von der Länge der Eingabedaten \lstinline{s0} und \lstinline{s1}.
Für die Rechnung dürfen Sie beide Längen mit $n$ gleichsetzen,
obwohl sie normalerweise nicht gleich sind.
\points{2}
\item
Was passiert, wenn Sie beim Aufruf der Funktion für einen der
Parameter den Wert \lstinline{NULL} übergeben und warum?
\points{2}
\item
Was passiert, wenn Sie das Hauptprogramm wie folgt abändern
(\file{aufgabe-1d.c}) und warum?
\begin{lstlisting}[gobble=8]
int main (void)
{
int a[] = { 10, 4, 3, 7, 12, 0, 1 };
int b[] = { 7, 14, 0, 8, 9, 22, 10 };
f (a, b);
return 0;
}
\end{lstlisting}
\points{2}
\item
Beschreiben Sie -- in Worten und/oder als C-Quelltext --, wie
sich die Funktion \lstinline{f} effizienter gestalten läßt,
wenn man die ihr übergebenen Arrays \lstinline{s0} und
\lstinline{s1} als sortiert voraussetzt.\\
\points{5}
\item
Von welcher
Ordnung (Landau-Symbol) ist Ihre effizientere Version der Funktion und warum?\\
\points{2}
\end{enumerate}
\end{minipage}
\end{document}
../common/logo-hochschule-bochum-cvh-text.pdf
\ No newline at end of file
../common/logo-hochschule-bochum.pdf
\ No newline at end of file
../common/pgscript.sty
\ No newline at end of file
../common/pgslides.sty
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment