Skip to content
Snippets Groups Projects
Commit 38e33102 authored by Christof Kaufmann's avatar Christof Kaufmann
Browse files

Notebooks from applied-cs/data-science@e451096c

parent b88d83ec
Branches
No related tags found
No related merge requests found
Showing
with 3689 additions and 0 deletions
%% Cell type:markdown id:0002-0913d59b142f97e01b1f1d202696d848ab5b6e755f3d92df06ee693365f tags:
# Kovarianz
## Berechnen
Schreiben Sie eine Funktion `cov`, die zwei Arrays `x` und `y` erhält
und die Kovarianz zurück gibt.
%% Cell type:code id:0003-a69527b239a033f8134e8f47e334b1f9486b9076b43570d3fc203164ed0 tags:
```
import numpy as np
import pandas as pd
```
%% Cell type:markdown id:0005-016214def42f652d79a75899e99541de5f9661c91938dffca7490fcc347 tags:
### Lösung
Wir ermitteln zunächst die zentrierten x und y-Werte. Dann
multiplizieren wir sie und bilden den Mittelwert.
%% Cell type:code id:0006-fadbee38c18d669a38b12077868f7669a98636383c5eb499c50a3a57b9d tags:
```
def cov(x, y):
x0 = x - np.mean(x)
y0 = y - np.mean(y)
return np.mean(x0 * y0)
```
%% Cell type:markdown id:0008-1839d17e4e89b5f286b8ba411595b6eadeed6664573c0cae88cf6869b85 tags:
### Tests
Testen Sie die Funktion mit den Beispielen aus den Folien:
%% Cell type:code id:0009-5a9afeeb069c9adcfd985dfa866647c55d0b7afa511f1ab88ce0e3feda9 tags:
```
df1 = pd.DataFrame({'x': [10, 7, 5, -13, -8, -3, -1, 11], 'y': [8, 10, 3, -9, -1, -7, -1, 13]})
df2 = df1 * [1, -1]
df3 = pd.DataFrame({'x': [14, 10, 4, 2, -1, -1, -9, -11], 'y': [3, 0, 10, -9, 13, -6, 7, -2]})
cov(df1.x, df1.y)
```
%% Output
54.875
%% Cell type:code id:0010-bcaedf82ed0c414209d4e126ee2fd2013a7f1cd96fb948355bf543c2ce7 tags:
```
cov(df2.x, df2.y)
```
%% Output
-54.875
%% Cell type:code id:0011-5530793defbb6ce07fafad4901e5575defa5e0894f0d8b8d206ff56113e tags:
```
cov(df3.x, df3.y)
```
%% Output
0.0
%% Cell type:markdown id:0016-76dfc0cb6810a254ca36daaf0b86fc5e15a5c807be4f17adf9ff053cfb6 tags:
## Erzeugen
So weit, so gut. Nun drehen wir die Aufgabenstellung um. Versuchen Sie
nun drei Datensätze aus jeweils zwei Samples zu erzeugen:
**Datensatz 1** soll als Kovarianz 1 besitzen.
### Lösung
Ein einfaches Beispiel für zwei Samples mit Kovarianz 1 wäre (0, 0), (2,
2). Der Mittelwert ist (1, 1), somit rechnen wir
$\frac 1 2 (1 \cdot 1 + 1 \cdot 1) = 1$.
%% Cell type:code id:0017-98190ce71c2abdc19eb7d8ac4354319f0d6acd8d42d0877945777483cda tags:
```
x = np.array([0, 2])
y = np.array([0, 2])
```
%% Cell type:markdown id:0018-04ac3f4882b3309363456c952768f31a2c708e671a5462093ff68e76a76 tags:
### Tests
%% Cell type:code id:0019-3ebb3905554befd6e9c90a8161f00000757c58b10e4f248e60f7e1abf9e tags:
```
cov(x, y)
```
%% Output
1.0
%% Cell type:markdown id:0022-90b5a593898934ee35ed76b5e931784de71996d0e0bf7d5a659d58ea41a tags:
**Datensatz 2** soll auch als Kovarianz 1 besitzen, aber mit anderen
Samples als zuvor.
### Lösung
Aber die Samples müssen dafür keine Diagonale bilden (Quadrate), sondern
können auch anders liegen (Rechtecke). Wir wählen (0, 0), (1, 4). Der
Mittelwert ist (1, 1), somit rechnen wir
$\frac 1 2 (\frac 1 2 \cdot 2 + \frac 1 2 \cdot 2) = 1$.
%% Cell type:code id:0023-9ec0433f3ab4acfa7459dc2d56714459dbcbd9078ce19baf91ffb8aa17d tags:
```
x = np.array([0, 1])
y = np.array([0, 4])
```
%% Cell type:markdown id:0024-503fa0c97971fa858f825b273ceb998780354d5bb183c47acfd4f3507cf tags:
### Tests
%% Cell type:code id:0025-3ebb3905554befd6e9c90a8161f00000757c58b10e4f248e60f7e1abf9e tags:
```
cov(x, y)
```
%% Output
1.0
%% Cell type:markdown id:0028-338b5930bf4bafa415d05676a139dfbe8cbce3d950085861e1a4061aa8b tags:
**Datensatz 3** soll als Kovarianz 4 besitzen.
### Lösung
Wenn wir die Werte im ersten Beispiel verdoppeln, vervierfacht sich das
Ergebnis. Mit (0, 0), (4, 4) ist die Kovarianz
$\frac 1 2 (2 \cdot 2 + 2 \cdot 2) = 4$.
%% Cell type:code id:0029-402124921fd7c721bfaa138f25c8d143eb13fe2aa271ad7473b7126b0ab tags:
```
x = np.array([0, 4])
y = np.array([0, 4])
```
%% Cell type:markdown id:0030-c36e6e0be7ad3f1dec0afd72fde3a265396ca90bf93c258dbd4e3346cbd tags:
### Tests
%% Cell type:code id:0031-3ebb3905554befd6e9c90a8161f00000757c58b10e4f248e60f7e1abf9e tags:
```
cov(x, y)
```
%% Output
4.0
%% Cell type:markdown id:0002-0913d59b142f97e01b1f1d202696d848ab5b6e755f3d92df06ee693365f tags:
# Kovarianz
## Berechnen
Schreiben Sie eine Funktion `cov`, die zwei Arrays `x` und `y` erhält
und die Kovarianz zurück gibt.
%% Cell type:code id:0003-a69527b239a033f8134e8f47e334b1f9486b9076b43570d3fc203164ed0 tags:
```
import numpy as np
import pandas as pd
```
%% Cell type:markdown id:0005-1839d17e4e89b5f286b8ba411595b6eadeed6664573c0cae88cf6869b85 tags:
### Tests
Testen Sie die Funktion mit den Beispielen aus den Folien:
%% Cell type:code id:0006-5a9afeeb069c9adcfd985dfa866647c55d0b7afa511f1ab88ce0e3feda9 tags:
```
df1 = pd.DataFrame({'x': [10, 7, 5, -13, -8, -3, -1, 11], 'y': [8, 10, 3, -9, -1, -7, -1, 13]})
df2 = df1 * [1, -1]
df3 = pd.DataFrame({'x': [14, 10, 4, 2, -1, -1, -9, -11], 'y': [3, 0, 10, -9, 13, -6, 7, -2]})
cov(df1.x, df1.y)
```
%% Output
54.875
%% Cell type:code id:0007-bcaedf82ed0c414209d4e126ee2fd2013a7f1cd96fb948355bf543c2ce7 tags:
```
cov(df2.x, df2.y)
```
%% Output
-54.875
%% Cell type:code id:0008-5530793defbb6ce07fafad4901e5575defa5e0894f0d8b8d206ff56113e tags:
```
cov(df3.x, df3.y)
```
%% Output
0.0
%% Cell type:markdown id:0011-5e6f7ee8c09fb3163c75c37ab167a849116ef4505076b2442a9a3e7eb1b tags:
## Erzeugen
So weit, so gut. Nun drehen wir die Aufgabenstellung um. Versuchen Sie
nun drei Datensätze aus jeweils zwei Samples zu erzeugen:
**Datensatz 1** soll als Kovarianz 1 besitzen.
%% Cell type:code id:0012-1b4ea8eec5f19241e7602ee09cf19927687efc9d38c7d5360c417d2d3ba tags:
```
x = np.array([])
y = np.array([])
```
%% Cell type:markdown id:0013-04ac3f4882b3309363456c952768f31a2c708e671a5462093ff68e76a76 tags:
### Tests
%% Cell type:code id:0014-3ebb3905554befd6e9c90a8161f00000757c58b10e4f248e60f7e1abf9e tags:
```
cov(x, y)
```
%% Output
1.0
%% Cell type:markdown id:0015-3dbc650c0d3e7b7d38c1256a7a2dc71a13e88a5206c4e416af544e2b775 tags:
**Datensatz 2** soll auch als Kovarianz 1 besitzen, aber mit anderen
Samples als zuvor.
%% Cell type:code id:0016-1b4ea8eec5f19241e7602ee09cf19927687efc9d38c7d5360c417d2d3ba tags:
```
x = np.array([])
y = np.array([])
```
%% Cell type:markdown id:0017-503fa0c97971fa858f825b273ceb998780354d5bb183c47acfd4f3507cf tags:
### Tests
%% Cell type:code id:0018-3ebb3905554befd6e9c90a8161f00000757c58b10e4f248e60f7e1abf9e tags:
```
cov(x, y)
```
%% Output
1.0
%% Cell type:markdown id:0019-257f544a893b080f910b0568abdb73110977708806fc07ff2bca207ef7e tags:
**Datensatz 3** soll als Kovarianz 4 besitzen.
%% Cell type:code id:0020-1b4ea8eec5f19241e7602ee09cf19927687efc9d38c7d5360c417d2d3ba tags:
```
x = np.array([])
y = np.array([])
```
%% Cell type:markdown id:0021-c36e6e0be7ad3f1dec0afd72fde3a265396ca90bf93c258dbd4e3346cbd tags:
### Tests
%% Cell type:code id:0022-3ebb3905554befd6e9c90a8161f00000757c58b10e4f248e60f7e1abf9e tags:
```
cov(x, y)
```
%% Output
4.0
%% Cell type:markdown id:0005-26afc5b4704584feaccf0e55e8a571368fb090c84b1a48d539857d405c9 tags:
# Datasaurus
Laden Sie die Daten `datasaurus.csv` und betrachten für beliebige
Datensätze statistische Werte wie
- Mittelwerte von x und y
- Standardabweichungen von x und y
- Korrelationskoeffizient zwischen x und y
Was schließen Sie daraus? Was könnten Sie noch machen um ein
Datenverständnis aufzubauen?
## Lösung
Wir laden zunächst die Daten.
%% Cell type:code id:0006-ec8063a047adadc262ed2fa6a02a175adb276b5352581f5234aae966f7b tags:
```
import pandas as pd
df = pd.read_csv('datasaurus.csv')
```
%% Cell type:markdown id:0007-7706bb8a9163533b90003de7af396b817b9bfd92e413dedc6f55a04d24f tags:
Dann geben wir die Daten mal grob aus:
%% Cell type:code id:0008-0482c68413fbf8290e3b1e49b0a85901cfcd62ab0738760568a2a6e8a57 tags:
```
df
```
%% Output
dataset x y
0 dino 55.384600 97.179500
1 dino 51.538500 96.025600
2 dino 46.153800 94.487200
3 dino 42.820500 91.410300
4 dino 40.769200 88.333300
... ... ... ...
1841 wide_lines 33.674442 26.090490
1842 wide_lines 75.627255 37.128752
1843 wide_lines 40.610125 89.136240
1844 wide_lines 39.114366 96.481751
1845 wide_lines 34.583829 89.588902
[1846 rows x 3 columns]
%% Cell type:markdown id:0009-766eb695b9c56d31ef0e81db1ca96663c9fd98e3e46dd1b6cace938f9ed tags:
Aha, die Datensätze sind also über die Spalte `dataset` getrennt. Das
ist Praktisch, denn damit können wir die Datensätze gruppieren und für
alle den Mittelwert ausgeben:
%% Cell type:code id:0010-b342ee9c963b9fa49a7bea82eefca4c86be18f50947908236381dfc1ad0 tags:
```
df.groupby('dataset').mean()
```
%% Output
x y
dataset
away 54.266100 47.834721
bullseye 54.268730 47.830823
circle 54.267320 47.837717
dino 54.263273 47.832253
dots 54.260303 47.839829
h_lines 54.261442 47.830252
high_lines 54.268805 47.835450
slant_down 54.267849 47.835896
slant_up 54.265882 47.831496
star 54.267341 47.839545
v_lines 54.269927 47.836988
wide_lines 54.266916 47.831602
x_shape 54.260150 47.839717
%% Cell type:markdown id:0011-5c2541a1ac168b4459987d9491310dcd4abe498e8983f80c18f67a82eac tags:
Die Mittelwerte aller Datensätze sind jeweils für x und y nahezu gleich.
Und die Standardabweichungen auch:
%% Cell type:code id:0012-a437abd5ed49b4b3e4e43675df457ff411477c73c3c4aec6d3308b89356 tags:
```
df.groupby('dataset').std()
```
%% Output
x y
dataset
away 16.769825 26.939743
bullseye 16.769239 26.935727
circle 16.760013 26.930036
dino 16.765142 26.935403
dots 16.767735 26.930192
h_lines 16.765898 26.939876
high_lines 16.766704 26.939998
slant_down 16.766759 26.936105
slant_up 16.768853 26.938608
star 16.768959 26.930275
v_lines 16.769959 26.937684
wide_lines 16.770000 26.937902
x_shape 16.769958 26.930002
%% Cell type:markdown id:0013-d181c960ab516f871d98eadc6493da90b9b4068bccda237e749200efc04 tags:
Was ist mit den Korrelationen zwischen x und y? Der Code ist
kompliziert, weil hier ein Multi-Index ensteht (jeder Dataset enthält
eine Korrelationsmatrix) und wir nur einen Wert davon haben wollen:
%% Cell type:code id:0014-8236dab4db77881177f2961943ff03473ddd7fe7c652ac66baea2a09a01 tags:
```
df.groupby('dataset').corr()['x'][:, 'y']
```
%% Output
dataset
away -0.064128
bullseye -0.068586
circle -0.068343
dino -0.064472
dots -0.060341
h_lines -0.061715
high_lines -0.068504
slant_down -0.068980
slant_up -0.068609
star -0.062961
v_lines -0.069446
wide_lines -0.066575
x_shape -0.065583
Name: x, dtype: float64
%% Cell type:markdown id:0015-72d799f9b4a7863ce5a44a0cf48b7da4bce08752c77b2f27f07afecc8be tags:
Also auch die Korrelationswerte sind fast gleich und zwar nahe 0. Hmm…
wir könnten jetzt z. B. den Median anschauen. Der wäre nicht gleich,
aber daraus verstehen wir auch nicht so richtig, was hier los ist.
Scatter-Plots to the rescue!
%% Cell type:code id:0016-cb4f9080bda8d31054a17b051085cdb7f6f96dc5c873616190c59420579 tags:
```
df.groupby('dataset').plot.scatter('x', 'y')
```
%% Cell type:markdown id:0017-9bb4b1a268443f12295eac8e102fc5006bcba977410502f17341a4cec57 tags:
Für einen einzelnen Plot können wir natürlich auch nach dem Dataset
filtern:
%% Cell type:code id:0018-33dd16c34b351bd44e01483365f9c25c16717a4927e3e5f8a46d66ab17a tags:
```
df.loc[df.dataset == 'dino', ['x', 'y']].plot.scatter('x', 'y')
```
%% Cell type:markdown id:0019-9306a8b6383c69b603008b91eefd53d0cbff5ba07be0cdf3b471261b165 tags:
Schlussfolgerung: Visualisierung von Daten ist wichtig, aber meistens
nicht so einfach wie hier. Dimensionsreduktionstechniken können dabei
behilflich sein. Statistiken sind nützlich, aber reichen nicht aus um
ein hinreichendes Datenverständnis zu erwerben.
%% Cell type:markdown id:0004-acee268a50d14b526dc75bb1f3532efe74d442564a65304d69624cfecef tags:
# Datasaurus
Laden Sie die Daten `datasaurus.csv` und betrachten für beliebige
Datensätze statistische Werte wie
- Mittelwerte von x und y
- Standardabweichungen von x und y
- Korrelationskoeffizient zwischen x und y
Was schließen Sie daraus? Was könnten Sie noch machen um ein
Datenverständnis aufzubauen?
Hier Ihr Code:
%% Cell type:code id:0005-44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 tags:
```
```
%% Cell type:markdown id:0001-47ec560fa976f47180d8889c9b67b1031223795531ff28c56b723a977ee tags:
# Anscombe’s Datasets
Hier ist der Code um die Statistiken und die Plots aus den Folien zu
erzeugen. Falls Sie möchten, können Sie damit herumspielen.
%% Cell type:code id:0002-bbd16bd579840f98abcf3f0f6b704f69373b858aa9b36da508d149f1adf tags:
```
import matplotlib.pyplot as plt
from numpy.polynomial import Polynomial
import numpy as np
import pandas as pd
import seaborn as sns
df = sns.load_dataset("anscombe")
```
%% Cell type:code id:0003-b4658e20442bb236c82c49dc2764e6ce9c93c82fe6eb93a5e79ab822189 tags:
```
for ds_name, ds in df.groupby('dataset')[['x', 'y']]:
mean = ds.mean()
var = ds.var()
c = ds.corr()
poly = Polynomial.fit(ds.x, ds.y, deg=1).convert()
with np.printoptions(precision=2):
print(f'DS {ds_name:3}: mean (x: {mean.x:.2f}, y: {mean.y:.2f}), var (x: {var.x:.2f}, y: {var.y:.2f}), corr: {c.x.y:.3f}, linear model regression: {poly}')
sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df,
col_wrap=2, ci=None, palette="muted", height=5,
line_kws={'color': 'lightgrey'}, scatter_kws={"s": 100})
fig = plt.gcf()
fig.set_size_inches(6.5, 4)
fig.patch.set_alpha(0)
fig.tight_layout()
fig.savefig('anscombe.pdf', pad_inches=0)
```
%% Cell type:markdown id:0002-8585dc9b0ed930d72556df47900a3e3dae65ea2bd7f244d5822c3bb4206 tags:
# Feature-Map
In dieser Aufgabe wollen wir die Features entsprechend der
Korrelationsmatrix auf einer Karte plotten.
1. Laden Sie die Autodaten aus `autos.csv` als DataFrame.
2. *Bonus: Werfen Sie die Ausreißer raus. Was hat das für Auswirkungen
auf das Ergebnis.*
3. Berechnen Sie die Korrelationsmatrix.
4. Wandeln Sie die Korrelationsmatrix $P$ in eine Distanzmatrix
$D = \sqrt{1 - P}$ um. \*Bonus: Probieren Sie auch
$D = \sqrt{1 - |P|}$
5. Finden Sie mit MDS die Koordinaten zu den Features. Sie benötigen
`dissimilarity='precomputed'`, damit Sie in `fit` $D$ reingeben
können.
6. Plotten Sie das Ergebnis mittels Plotly Express’ Scatter-Plot, denn
da können Sie an das Argument `text` die Feature-Namen übergeben.
%% Cell type:code id:0003-c1bb0a9ce1897e013bbc5224cd3031da808967b4ce5f467e752db79b3b6 tags:
```
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.manifold import MDS
```
%% Cell type:markdown id:0005-2b2e02f7c099c0b3c2e7ee38e724334b181f374b2f6da5066b33d7489c5 tags:
## Lösung
Hier der Code zur Lösung:
%% Cell type:code id:0006-472ff22b9cdec2be85fd14f451bb4cdea7db8ee3cbf28c128c994cf0453 tags:
```
df = pd.read_csv('autos.csv').drop(columns=['Marke', 'Modell'])
# df = df[df.Grundpreis < 150_000] # mit Ausreißern ist der Grundpreis weit weg von den Motordaten
corr = df.corr()
dist_corr = np.sqrt(1 - corr)
# dist_corr = np.sqrt(1 - np.abs(corr)) # mit abs rückt die Türanzahl näher an alle anderes
mds = MDS(dissimilarity='precomputed', normalized_stress='auto')
corr_map = mds.fit_transform(dist_corr)
corr_map = pd.DataFrame(corr_map)
corr_map['feature'] = corr.columns
```
%% Cell type:markdown id:0007-96c5b071fc624449a3bff00f5acf449ff13a3986090c619ea3c40dbebf7 tags:
Der Grundpreis ist ohne Ausreißer näher an den Motordaten, d.h. der
Preis verhält sich ähnlich. Mit Ausreißer ist der Preis weit weg. Das
lässt sich so interpretieren, dass der Preis für sehr teure Autos nicht
mehr im Verhältnis zum Motor steht.
%% Cell type:code id:0008-20ca1c79ef727fdf527b2a98d7d6fe563ef6fd9c2b005bb1fdfb364bbbb tags:
```
px.scatter(corr_map, x=0, y=1, text=corr.columns)
```
%% Cell type:markdown id:0002-8585dc9b0ed930d72556df47900a3e3dae65ea2bd7f244d5822c3bb4206 tags:
# Feature-Map
In dieser Aufgabe wollen wir die Features entsprechend der
Korrelationsmatrix auf einer Karte plotten.
1. Laden Sie die Autodaten aus `autos.csv` als DataFrame.
2. *Bonus: Werfen Sie die Ausreißer raus. Was hat das für Auswirkungen
auf das Ergebnis.*
3. Berechnen Sie die Korrelationsmatrix.
4. Wandeln Sie die Korrelationsmatrix $P$ in eine Distanzmatrix
$D = \sqrt{1 - P}$ um. \*Bonus: Probieren Sie auch
$D = \sqrt{1 - |P|}$
5. Finden Sie mit MDS die Koordinaten zu den Features. Sie benötigen
`dissimilarity='precomputed'`, damit Sie in `fit` $D$ reingeben
können.
6. Plotten Sie das Ergebnis mittels Plotly Express’ Scatter-Plot, denn
da können Sie an das Argument `text` die Feature-Namen übergeben.
%% Cell type:code id:0003-c1bb0a9ce1897e013bbc5224cd3031da808967b4ce5f467e752db79b3b6 tags:
```
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.manifold import MDS
```
%% Cell type:markdown id:0001-9c88d904212173177e3cd805c405ca6bffb6c39ce47a88ff66351aa9536 tags:
# MNIST visualisieren
In dieser Aufgabe wollen wir einen hochdimensionalen Datensatz in 2D
(oder 3D) plotten. Die Daten werden schon geladen.
%% Cell type:code id:0002-f9e5f87e267af56fbd5014863286132d368c2876d241287b849ceff60cc tags:
```
import numpy as np
import plotly.express as px
from tensorflow.keras.datasets.mnist import load_data
(x_train, y_train), (x_test, y_test) = load_data()
# reshape test set to 10 000 x 784
X = x_test.reshape(-1, 28 * 28)
```
%% Cell type:markdown id:0003-fef1281e3edb72c906210479c5811c47fe2289914626b2c40534881280c tags:
Wenn Sie mögen ist hier ein Plot von verschiedenen Bildern der gleichen
Klasse. So können Sie ein Blick reinwerfen.
%% Cell type:code id:0004-c879d58b500c83a0364d8680cc6b05c9cc97d36d3ea3743e112c56644db tags:
```
# plot 50 examples for each digit
imgs = np.empty((50, 10, 28, 28))
for j in range(10):
imgs[:, j] = x_test[y_test == j][:50]
fig = px.imshow(imgs, animation_frame=0, facet_col=1, facet_col_wrap=5, binary_string=True)
fig.update_xaxes(showticklabels=False)
fig.update_yaxes(showticklabels=False)
fig.show()
```
%% Cell type:markdown id:0007-d262459c63ed3d98add57f2c48715daab6ff8a674c4e923ee87f87f61ad tags:
Transformieren Sie die Daten in 2D (ode 3D) und plotten die
Transformierten Daten als Scatter-Plot mit `y_test` als
Farbunterscheidung.
## Lösung
Hier der Code zur Lösung:
%% Cell type:code id:0008-a04806d4df0812cf8fba0aa2e4e76d43ce0a2c8b2e2a9d7c032abc4e78f tags:
```
from umap import UMAP
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
umap = UMAP(n_neighbors=20, metric='manhattan', min_dist=0.1)
X_umap = umap.fit_transform(X)
scatter1 = px.scatter(X_pca, x=0, y=1, color=y_test)
scatter1.show()
scatter2 = px.scatter(X_umap, x=0, y=1, color=y_test, hover_data={'class': y_test, 'index': np.arange(len(X_umap))})
scatter2.show()
```
%% Cell type:markdown id:0009-96c5b071fc624449a3bff00f5acf449ff13a3986090c619ea3c40dbebf7 tags:
Der Grundpreis ist ohne Ausreißer näher an den Motordaten, d.h. der
Preis verhält sich ähnlich. Mit Ausreißer ist der Preis weit weg. Das
lässt sich so interpretieren, dass der Preis für sehr teure Autos nicht
mehr im Verhältnis zum Motor steht.
%% Cell type:markdown id:0001-9c88d904212173177e3cd805c405ca6bffb6c39ce47a88ff66351aa9536 tags:
# MNIST visualisieren
In dieser Aufgabe wollen wir einen hochdimensionalen Datensatz in 2D
(oder 3D) plotten. Die Daten werden schon geladen.
%% Cell type:code id:0002-f9e5f87e267af56fbd5014863286132d368c2876d241287b849ceff60cc tags:
```
import numpy as np
import plotly.express as px
from tensorflow.keras.datasets.mnist import load_data
(x_train, y_train), (x_test, y_test) = load_data()
# reshape test set to 10 000 x 784
X = x_test.reshape(-1, 28 * 28)
```
%% Cell type:markdown id:0003-fef1281e3edb72c906210479c5811c47fe2289914626b2c40534881280c tags:
Wenn Sie mögen ist hier ein Plot von verschiedenen Bildern der gleichen
Klasse. So können Sie ein Blick reinwerfen.
%% Cell type:code id:0004-c879d58b500c83a0364d8680cc6b05c9cc97d36d3ea3743e112c56644db tags:
```
# plot 50 examples for each digit
imgs = np.empty((50, 10, 28, 28))
for j in range(10):
imgs[:, j] = x_test[y_test == j][:50]
fig = px.imshow(imgs, animation_frame=0, facet_col=1, facet_col_wrap=5, binary_string=True)
fig.update_xaxes(showticklabels=False)
fig.update_yaxes(showticklabels=False)
fig.show()
```
%% Cell type:markdown id:0005-9f3a45468236a64a112ad49260df46a53eb308c1c3e503a34d2ae0c353f tags:
Transformieren Sie die Daten in 2D (ode 3D) und plotten die
Transformierten Daten als Scatter-Plot mit `y_test` als
Farbunterscheidung.
Marke,Modell,Grundpreis,Leistung_kW,Hubraum,Leergewicht,Verbrauch_kombi,Tueranzahl,Fahrzeugklasse
Bugatti,Chiron,2856000,1103,7993,2070,22.5,2,6
Koenigsegg,Agera RS,2112275,865,5032,1395,14.7,2,6
Lamborghini,Centenario LP770-4,2082500,566,6498,1520,16,2,6
Lamborghini,Centenario Roadster LP770-4,2082500,566,6498,1570,16,2,6
smart,forfour BRABUS,21225,80,898,1095,4.6,5,1
Abarth,595C,21090,107,1368,1150,6.5,2,1
Abarth,595,18490,107,1368,1110,6,3,1
VW,up! GTI,16975,85,999,1070,4.8,3,1
Opel,ADAM ROCKS 1.2,15780,51,1229,1086,5.3,3,1
Fiat,500C 1.2 8V,15190,51,1242,980,4.9,2,1
VW,cross up! 1.0 BMT,14500,55,999,1009,4.3,5,1
Fiat,Panda Cross 1.2 8V,13490,51,1242,1015,5.1,5,1
Opel,KARL ROCKS 1.0,12800,55,999,939,4.7,5,1
Peugeot,108 Top! 1.0 VTi 68,12600,51,998,915,4.1,3,1
Fiat,500 1.2 8V,12590,51,1242,940,4.9,3,1
Suzuki,Ignis 1.2,12540,66,1242,885,4.6,5,1
Citroen,C1 Airscape VTi 68,12400,51,998,915,4.1,3,1
Opel,ADAM 1.2,12135,51,1229,1086,5.3,3,1
smart,forfour 1.0,11765,52,999,975,4.2,5,1
Hyundai,i10 1.0,9990,49,998,1008,4.7,5,1
KIA,Picanto 1.0,9990,49,998,935,4.4,5,1
Peugeot,108 1.0 VT 68,9990,51,998,915,4.1,3,1
VW,up! 1.0,9975,44,999,926,4.4,3,1
Toyota,Aygo 1.0,9950,51,998,915,4.1,3,1
Fiat,Panda 1.2 8V,9850,51,1242,1015,5.1,5,1
Skoda,Citigo 1.0,9770,44,999,929,4.4,3,1
Renault,Twingo SCe 70,9750,51,999,939,5,5,1
Suzuki,Celerio 1.0,9690,50,998,880,4.3,5,1
Opel,KARL 1.0,9560,55,999,939,4.5,5,1
Citroen,C1 VTi 68,9090,51,998,915,4.1,3,1
SEAT,Mii 1.0,8990,44,999,929,4.4,3,1
MINI,John Cooper Works Cabrio,34300,170,1998,1385,6.5,2,2
Nissan,Juke Nismo RS,31915,157,1618,1469,7.3,5,2
Audi,S1 Sportback,31300,170,1984,1415,7.1,5,2
Toyota,Yaris GRMN,30800,156,1798,1135,7.5,5,2
MINI,John Cooper Works,30700,170,1998,1280,6.3,3,2
Audi,S1,30450,170,1984,1390,7,3,2
DS Automobiles,DS 3 Performance,26990,153,1598,1250,5.4,3,2
Opel,Corsa OPC,24930,152,1598,1293,7.5,3,2
Peugeot,208.,23990,153,1598,1235,5.4,3,2
VW,Polo GTI,23950,147,1984,1355,5.9,5,2
Renault,Clio R.S.,23390,147,1618,1279,5.9,5,2
MINI,One Cabrio,22500,75,1198,1280,5,2,2
Honda,HR-V 1.5 i-VTEC,20690,96,1498,1312,5.6,5,2
DS Automobiles,DS 3 Cabrio PureTech 82,19940,60,1199,1110,4.9,2,2
Jeep,Renegade 1.6 E-torQ,19900,81,1598,1395,6,5,2
Opel,Mokka X 1.6 Start&Stop,18990,85,1598,1355,6.7,5,2
Ford,EcoSport 1.0 EcoBoost,18590,92,998,1337,5.2,5,2
Citroen,C3 Picasso VTi 95,18190,70,1397,1276,5.9,5,2
Hyundai,i20 Coupee 1.0 T-GDI,18100,88,998,1145,4.8,3,2
Ford,EcoSport 1.5 Ti-VCT,17990,82,1498,1314,6.3,5,2
Mazda,CX-3 SKYACTIV-G 120,17990,88,1998,1230,5.9,5,2
Suzuki,Vitara 1.6,17990,88,1586,1150,5.3,5,2
Peugeot,2008 PureTech 82,17550,60,1199,1120,4.9,5,2
Hyundai,Kona 1.0 T-GDI,17500,88,998,1233,5.2,5,2
MINI,One First,17350,55,1198,1225,5.2,5,2
Hyundai,i20 Active 1.0 T-GDI blue,17300,74,998,1160,4.5,5,2
KIA,Soul 1.6 GDI,17240,97,1591,1275,6.5,5,2
Audi,A1 Sportback 1.0 TFSI ultra,17100,60,999,1135,4.2,5,2
Fiat,500L 1.4 16V,16990,70,1368,1330,6.2,5,2
Fiat,500L Wagon 1.4 16V,16990,70,1368,1350,6.1,5,2
Opel,Crossland X 1.2,16990,60,1199,1136,5.2,5,2
Ford,B-MAX 1.4,16800,66,1388,1275,6,5,2
Honda,Jazz 1.3 i-VTEC,16640,75,1318,1138,5,5,2
Fiat,500L Urban 1.4 16V,16490,70,1368,1320,6.1,5,2
MINI,One First,16400,55,1198,1165,5.1,3,2
Fiat,500X 1.6 E-torQ,16290,81,1598,1350,6.4,5,2
Audi,A1 1.0 TFSI ultra,16250,60,999,1110,4.2,3,2
DS Automobiles,DS 3 PureTech 82,15990,60,1199,1049,4.6,3,2
Nissan,Juke 1.6,15990,69,1598,1163,6,5,2
SEAT,Arona 1.0 EcoTSI,15990,70,999,1165,4.9,5,2
SsangYong,Tivoli 1.6 e-XGi 160,15990,94,1597,1270,6.6,5,2
Renault,Captur ENERGY TCe 90,15890,66,898,1259,5.1,5,2
Hyundai,ix20 1.4 blue,15790,66,1396,1253,5.6,5,2
KIA,Stonic 1.2,15790,62,1248,1145,5.2,5,2
Alfa Romeo,MiTo 1.4 8V,15700,57,1368,1155,5.6,3,2
Suzuki,Jimny 1.3,15590,62,1328,1135,7.1,3,2
Citroen,C3 Aircross PureTech 82,15290,60,1199,1163,5.1,5,2
Ford,Tourneo Courier 1.0 EcoBoost,15260,74,998,1260,5.3,5,2
Ford,Transit Courier Kombi 1.0 EcoBoost,15220,74,998,1260,5.3,4,2
Fiat,Fiorino Kombi 1.4 8V,15161,57,1368,1255,6.9,4,2
KIA,Venga 1.4,14890,66,1396,1253,6,5,2
Citroen,C4 Cactus PureTech 75,13990,55,1199,1040,4.6,5,2
Suzuki,Swift 1.2 Dualjet,13790,66,1242,915,4.3,5,2
Suzuki,Baleno 1.2 Dualjet,13790,66,1242,940,4.2,5,2
Skoda,Fabia Combi 1.0 MPI,13450,55,999,1104,4.8,5,2
Nissan,Micra 1.0,12990,52,998,977,4.6,5,2
Renault,Clio Grandtour 1.2 16V 75,12990,54,1149,1141,5.6,5,2
VW,Polo 1.0 MPI,12975,48,999,1105,4.7,5,2
Ford,Fiesta 1.1,12950,51,1084,1108,4.7,3,2
Mazda,2 SKYACTIV-G 75,12890,55,1496,1045,4.7,5,2
Fiat,Punto 1.2 8V,12790,51,1242,1105,5.4,5,2
Peugeot,208 1.2 PureTech 68,12750,50,1199,1035,4.7,3,2
Toyota,Yaris 1.0,12540,51,998,1055,4.3,3,2
Fiat,Qubo 1.4 8V,12490,57,1368,1255,6.9,5,2
SEAT,Ibiza 1.0 MPI,12490,48,999,1091,4.9,5,2
Skoda,Fabia 1.0 MPI,12150,44,999,1080,4.8,5,2
Opel,Corsa 1.2,12135,51,1229,1120,5.4,3,2
Hyundai,i20 1.2,12015,55,1248,1055,5.1,5,2
Citroen,C3 PureTech 68,11990,50,1199,1051,4.7,5,2
Renault,Clio 1.2 16V 75,11990,54,1149,1134,5.6,5,2
KIA,Rio 1.2,11690,62,1248,1110,4.8,5,2
Lada,Kalina Cross 1.6 8V,10200,64,1596,1110,6.6,5,2
Dacia,Sandero Stepway TCe 90 Start&Stop,9990,66,898,1115,5.1,5,2
Ford,Ka+ 1.2 Ti-VCT,9990,51,1198,1055,5,5,2
Mitsubishi,Space Star 1.0,9290,52,999,920,4.2,5,2
Lada,Kalina Kombi 1.6 8V,8260,64,1596,1110,6.6,5,2
Lada,Kalina 1.6 8V,7460,64,1596,1080,6.6,5,2
Dacia,Sandero SCe 75,6990,54,998,1044,5.2,5,2
smart,fortwo cabrio BRABUS,23675,80,898,1040,4.6,2,1
smart,fortwo Coupee BRABUS,20415,80,898,995,4.5,3,1
smart,fortwo cabrio 1.0,14365,52,999,940,4.3,2,1
smart,fortwo Coupee 1.0,11105,52,999,890,4.1,3,1
Morgan,Aero Supersports 4.8 V8,168000,270,4799,1220,11.2,2,4
BMW,M3 CS,117600,338,2979,1660,8.3,4,4
BMW,M4 CS Coupee,116900,338,2979,1655,8.4,2,4
Lotus,Evora 400,96000,298,3456,1415,9.7,2,4
Alfa Romeo,Stelvio Quadrifoglio,89000,375,2891,1905,9,5,4
Porsche,Macan Turbo,84586,294,3604,2000,9,5,4
BMW,M4 Cabrio,84500,317,2979,1825,9.1,2,4
BMW Alpina,B4 S Bi-Turbo Cabrio,81400,324,2979,1915,8.3,2,4
Audi,RS5 Coupee,80900,331,2894,1730,8.7,2,4
Audi,RS4 Avant,79800,331,2894,1790,8.8,5,4
BMW,M4 Coupee,78200,317,2979,1572,8.8,2,4
BMW,M3,77500,317,2979,1595,8.8,4,4
Lexus,RC F,75900,351,4969,1840,10.8,3,4
BMW Alpina,B4 S Bi-Turbo Coupee,75300,324,2979,1690,7.9,2,4
Lotus,Exige Coupee,75200,258,3456,1110,10.1,2,4
Lotus,Exige Roadster,75200,258,3456,1110,10.1,2,4
Porsche,Macan GTS,74828,265,2997,1970,8.9,5,4
BMW Alpina,B3 S Bi-Turbo Touring,74700,324,2979,1780,8.1,5,4
BMW Alpina,B3 S Bi-Turbo,72900,324,2979,1705,7.9,4,4
Alfa Romeo,Giulia Quadrifoglio,72800,375,2891,1670,8.5,4,4
Cadillac,ATS-V Coupee,72500,346,3564,1775,11.4,3,4
Alfa Romeo,4C Spider,72000,177,1742,1015,6.9,2,4
Cadillac,ATS-V,69900,346,3564,1775,11.6,4,4
Audi,TT RS Roadster,69200,294,2480,1605,8.3,2,4
Mercedes,C 43 AMG Cabriolet,68455,270,2996,1870,8.3,2,4
Audi,S5 Cabriolet,68050,260,2995,1915,7.9,2,4
Morgan,Roadster 3.7 V6,68000,209,3721,950,9.8,2,4
Audi,TT RS Coupee,66400,294,2480,1515,8.2,3,4
Mercedes,GLC Coupee 43 AMG,65807,270,2996,1855,8.4,5,4
Audi,SQ5 TFSI,65400,260,2995,1945,8.3,5,4
Alfa Romeo,4C,63500,177,1742,970,6.8,2,4
Audi,S5 Sportback,62750,260,2995,1735,7.5,5,4
Audi,S5 Coupee,62750,260,2995,1690,7.5,2,4
Mercedes,GLC 43 AMG,62178,270,2996,1845,8.3,5,4
Audi,S4 Avant,61900,260,2995,1750,7.7,5,4
Mercedes,C 43 AMG T-Modell,61850,270,2996,1735,7.9,5,4
Mercedes,C 43 AMG Coupee,61761,270,2996,1735,7.8,2,4
Mercedes,C 43 AMG,60184,270,2996,1690,7.8,4,4
Audi,S4,60050,260,2995,1705,7.5,4,4
Mercedes,SLC 43 AMG,60036,270,2996,1595,7.8,2,4
Alpine,A110,58000,185,1798,1178,6.1,2,4
Land Rover,Range Rover Velar P250,56400,184,1998,1804,7.6,5,4
Porsche,Macan,56264,185,1984,1845,7.2,5,4
Audi,TTS Roadster,53350,228,1984,1525,7.3,2,4
Jaguar,F-Pace 25t,51160,184,1997,1760,7.4,5,4
Audi,TTS Coupee,50550,228,1984,1440,7.1,3,4
Audi,Q5 2.0 TFSI,50500,185,1984,1795,6.8,5,4
BMW,X4 xDrive20i,49850,135,1997,1810,7.2,5,4
Mercedes,GLC Coupee 250,49837,155,1991,1785,6.9,5,4
Opel,Insignia Sports Tourer GSi 2.0 DI Turbo Start&Stop,48800,191,1998,1716,8.7,5,4
Audi,A4 Allroad 2.0 TFSI,48750,185,1984,1655,6.4,5,4
Volvo,XC60 T5,48650,184,1969,1915,7.4,5,4
Jeep,Cherokee 3.2 V6 Pentastar,48000,200,3239,2036,9.6,5,4
Opel,Insignia Grand Sport GSi 2.0 DI Turbo Start&Stop,47800,191,1998,1683,8.6,5,4
BMW,420i Cabrio,47700,135,1998,1775,6.2,2,4
Volvo,S60 Cross Country T5,47050,180,1969,1722,7.4,4,4
Nissan,370Z Nismo,46880,253,3696,1496,10.6,3,4
Volvo,V60 Cross Country T5,45950,180,1969,1776,7.4,5,4
Land Rover,Discovery Sport Si4,45750,177,1998,1796,8,5,4
Mercedes,GLC 250,45315,155,1991,1735,6.5,5,4
Infiniti,Q50 2.0t,44900,155,1991,1587,6.3,4,4
Jeep,Wrangler Unlimited 3.6 V6,44900,209,3604,1995,11.4,5,4
Infiniti,Q60 2.0t,44500,155,1991,1722,6.8,2,4
BMW,X3 xDrive20i,44400,135,1998,1790,7.1,5,4
Audi,A5 Cabriolet 2.0 TFSI,44000,140,1984,1675,5.9,2,4
KIA,Stinger 2.0 T-GDI,43990,188,1998,1717,7.9,5,4
VW,Passat Alltrack 2.0 TSI BMT,43925,162,1984,1677,6.9,5,4
Morgan,4/4 1.8 16V,43009,82,1595,800,8.2,2,4
Mercedes,C 180 Cabriolet,42727,115,1595,1600,6,2,4
Infiniti,Q50 2.0t,42500,155,1991,1585,6.3,4,4
Alfa Romeo,Stelvio 2.0 Turbo 16V,42200,147,1995,1735,7,5,4
Jeep,Wrangler 3.6 V6,41900,209,3604,1828,11,3,4
Renault,Espace ENERGY TCe 225,40900,165,1798,1685,6.8,5,4
BMW,420i Coupee,40400,135,1998,1550,5.8,2,4
BMW,420i Gran Coupee,40400,135,1998,1595,5.8,5,4
Cadillac,ATS Coupee 2.0 Turbo,40400,203,1998,1591,7.7,3,4
BMW,320i Gran Turismo,40200,135,1998,1655,6.1,5,4
Nissan,370Z Roadster,40130,241,3696,1496,11.2,2,4
DS Automobiles,DS 7 Crossback PureTech 225,38990,165,1598,1500,5.9,5,4
Alfa Romeo,Giulia 2.0 Turbo 16V,38500,147,1995,1504,6,4,4
Audi,A5 Sportback 2.0 TFSI,38050,140,1984,1505,5.8,5,4
Audi,A5 Coupee 2.0 TFSI,38050,140,1984,1465,5.6,2,4
Cadillac,ATS 2.0 Turbo,37400,203,1998,1593,7.6,4,4
Jaguar,XE 20t,36960,147,1997,1540,6.3,4,4
Subaru,Outback 2.5i,36900,129,2498,1582,7,5,4
Mercedes,C 180 Coupee,36033,115,1595,1475,5.3,2,4
Audi,TT Roadster 1.8 TFSI,35550,132,1798,1375,5.9,2,4
Mercedes,SLC 180,35349,115,1595,1435,5.6,2,4
Skoda,Kodiaq Scout 1.4 TSI ACT,35050,110,1395,1610,6.8,5,4
Opel,Insignia Country Tourer 1.5 DI Turbo Start&Stop,34885,121,1490,1522,6.4,5,4
BMW,318i Touring,34550,100,1499,1545,5.4,5,4
DS Automobiles,DS 5 THP 165 Stop&Start,34390,121,1598,1504,5.9,5,4
Nissan,370Z Coupee,34130,241,3696,1496,10.6,3,4
Audi,A4 Avant 1.4 TFSI,33700,110,1395,1445,5.4,5,4
Mercedes,C 160 T-Modell,33534,95,1595,1470,5.4,5,4
VW,Sharan 1.4 TSI BMT,33325,110,1395,1703,6.4,5,4
Ford,Galaxy 1.5 EcoBoost Start/Stopp,33310,118,1498,1708,6.5,5,4
Audi,TT Coupee 1.8 TFSI,33150,132,1798,1285,5.8,3,4
BMW,318i,32850,100,1499,1475,5.1,4,4
Subaru,BRZ 2.0i,32400,147,1998,1243,7.8,2,4
Skoda,Octavia Scout 1.8 TSI,32110,132,1798,1522,6.8,5,4
Volvo,V60 T2,32100,90,1498,1680,5.9,5,4
Mercedes,C 160,31868,95,1595,1395,5.2,4,4
Audi,A4 1.4 TFSI,31850,110,1395,1395,5.2,4,4
Skoda,Octavia Combi RS,31590,169,1984,1442,6.5,5,4
Hyundai,Santa Fe 2.4 GDI,31190,138,2359,1708,9.4,5,4
Skoda,Octavia RS,30890,169,1984,1420,6.5,5,4
Peugeot,508 SW THP 165 STOP&START,30850,121,1598,1495,5.8,5,4
Renault,Talisman Grandtour Energy TCe 150,30800,110,1618,1565,5.8,5,4
Volvo,S60 T2,30500,90,1498,1632,5.8,4,4
SEAT,Alhambra 1.4 TSI Start&Stop,30435,110,1395,1703,6.4,5,4
Ford,S-MAX 1.5 EcoBoost Start/Stopp,30400,118,1498,1645,6.5,5,4
Subaru,Levorg 1.6 Turbo,29990,125,1600,1537,6.9,5,4
Toyota,GT86 2.0,29990,147,1998,1305,7.8,2,4
VW,Tiguan Allspace 1.4 TSI ACT,29975,110,1395,1570,6.1,5,4
Peugeot,508 THP 165 STOP&START,29800,121,1598,1475,5.8,4,4
Renault,Talisman Energy TCe 150,29800,110,1618,1505,5.6,4,4
Toyota,RAV4 2.0,27990,112,1987,1565,6.7,5,4
VW,Passat Variant 1.4 TSI BMT,27875,92,1395,1394,5.3,5,4
Opel,Cascada 1.4 Turbo,27545,88,1364,1701,6.7,2,4
Ford,Mondeo Turnier 1.0 EcoBoost,26990,92,998,1476,5.3,5,4
VW,Passat 1.4 TSI BMT,26800,92,1395,1367,5.3,4,4
Opel,Insignia Sports Tourer 1.5 DI Turbo Start&Stop,26730,103,1490,1487,6,5,4
Skoda,Kodiaq 1.4 TSI,26150,92,1395,1502,6,5,4
Ford,Mondeo 1.0 EcoBoost,25990,92,998,1455,5.2,5,4
KIA,Optima Sportswagon 2.0,25990,120,1999,1550,7.6,5,4
Subaru,Forester 2.0X,25900,110,1995,1478,6.9,5,4
Mazda,6 SKYACTIV-G 145 i-ELOOP,25890,107,1998,1375,5.5,4,4
Mazda,6 Kombi SKYACTIV-G 145 i-ELOOP,25890,107,1998,1380,5.6,5,4
Toyota,Avensis Touring Sports 1.6,25740,97,1598,1460,6.2,5,4
Opel,Insignia Grand Sport 1.5 DI Turbo Start&Stop,25630,103,1490,1441,5.9,5,4
Hyundai,i40 Kombi 1.6 GDI blue,25490,99,1591,1503,6.1,5,4
Nissan,X-Trail 1.6 DIG-T,25440,120,1618,1505,6.2,5,4
KIA,Optima 2.0,25090,120,1999,1530,7.4,4,4
Nissan,X-Trail 1.6 DIG-T,24990,120,1618,1505,6.2,5,4
Peugeot,5008 1.2 PureTech 130,24900,96,1199,1385,5.1,5,4
Toyota,Avensis 1.6,24740,97,1598,1430,6.1,4,4
Honda,CR-V 2.0,23990,114,1997,1531,7.2,5,4
Mitsubishi,Outlander 2.0 ClearTec,21990,110,1998,1497,6.7,5,4
Nissan,Evalia 16V 110,20690,81,1598,1386,7.3,5,4
Nissan,NV200 Kombi 16V 110,19921,81,1598,1351,7.3,5,4
Skoda,Octavia Combi 1.2 TSI,18150,63,1197,1247,4.8,5,4
Skoda,Octavia 1.2 TSI,17450,63,1197,1225,4.8,5,4
Nissan,GT-R Nismo,184950,441,3799,1800,11.8,3,5
Jaguar,F-Type SVR Cabriolet 5.0 V8 Kompressor,146400,423,5000,1720,11.3,2,5
Jaguar,F-Type SVR Coupee 5.0 V8 Kompressor,139400,423,5000,1705,11.3,3,5
Porsche,Cayenne Turbo,138850,404,3996,2250,11.9,5,5
Porsche,Cayenne Turbo,132781,382,4806,2260,11.2,5,5
BMW,X6 M,124200,423,4395,2265,11.1,5,5
Mercedes,CLS 63 AMG Shooting Brake,122630,410,5461,2025,10.6,5,5
Audi,RS7 performance cod Sportback,122200,445,3993,2005,9.5,5,5
BMW,X5 M,120700,423,4395,2350,11.1,5,5
BMW,M5,117900,441,4395,1930,10.5,4,5
Mercedes,CLS 63 AMG Coupee,116918,410,5461,1870,9.9,4,5
BMW Alpina,B5 Bi-Turbo Touring,115300,447,4395,2120,10.4,5,5
Audi,RS6 cod Avant,112000,412,3993,2025,9.8,5,5
BMW Alpina,B5 Bi-Turbo,112000,447,4395,2015,10.3,4,5
Porsche,Cayenne GTS,102555,324,3604,2185,9.8,5,5
Lexus,GS F,100500,351,4969,1865,11.2,4,5
Nissan,GT-R,99900,419,3799,1827,11.8,3,5
Cadillac,CTS-V,98900,477,6162,1925,13,4,5
Dodge,Charger SRT 392,85900,362,6417,2000,15.5,4,5
Audi,S7 cod Sportback,84600,331,3993,2030,9.3,5,5
Dodge,Challenger SRT 392,82900,362,6417,2000,15.5,2,5
Audi,S6 cod Avant,80150,331,3993,2035,9.4,5,5
Mercedes,E 43 AMG T-Modell,78177,295,2996,1930,8.6,5,5
Porsche,718 Boxster GTS,78160,269,2497,1450,9,2,5
Audi,S6 cod,77650,331,3993,1970,9.2,4,5
Mercedes,GLE Coupee 43 AMG,77469,270,2996,2240,8.9,5,5
Porsche,718 Cayman GTS,76137,269,2497,1450,9,2,5
Maserati,Levante,76000,257,2979,2109,10.7,4,5
Mercedes,E 43 AMG,75387,295,2996,1840,8.2,4,5
Porsche,Cayenne,74828,250,2995,1985,9,5,5
BMW,X6 xDrive35i,72000,225,2979,2100,8.5,5,5
Mercedes,GLE 43 AMG,70746,270,2996,2180,8.6,5,5
Maserati,Ghibli,70250,257,2979,1810,8.9,4,5
Maserati,Ghibli,69200,243,2979,1810,8.9,4,5
Mercedes,GLE Coupee 400,68306,245,2996,2180,8.7,5,5
BMW,X5 xDrive35i,66400,225,2979,2105,8.5,5,5
Jaguar,F-Type Cabriolet P300,66200,221,1997,1545,7.2,2,5
Mercedes,CLS 400 Shooting Brake,65212,245,3498,1845,7.3,5,5
Mercedes,CLS 400 Coupee,63427,245,3498,1775,7.4,4,5
BMW,630i Gran Turismo,62300,190,1998,1720,6.2,5,5
Dodge,RAM 1500 Quad Cab 5.7 V8,61900,295,5700,2556,12.8,4,5
Mercedes,GLE 400,61583,245,2996,2130,8.5,5,5
Infiniti,Q70 3.7,60750,235,3696,1826,10.8,4,5
Volvo,XC90 T5,59850,184,1969,2112,7.8,5,5
Jaguar,F-Type Coupee P300,59200,221,1997,1525,7.2,3,5
Volvo,V90 Cross Country T5,57800,184,1969,1937,7.3,5,5
Porsche,718.,54717,220,1988,1410,7.4,2,5
Land Rover,Discovery Si4,54700,221,1997,2093,9.4,5,5
Mercedes,E 200 Cabriolet,54228,135,1991,1755,6.2,3,5
Infiniti,QX70 3.7,53800,235,3696,2012,12.1,5,5
Porsche,718.,52694,220,1988,1410,7.4,2,5
Jeep,Grand Cherokee 3.6 V6,51900,213,3604,2266,10,5,5
Jaguar,XF Sportbrake 25t,51060,184,1997,1760,6.8,5,5
Lexus,RX 200t,49900,175,1998,1885,7.8,5,5
Cadillac,XT5 3.6 V6,49300,231,3649,1954,10,5,5
BMW,520i Touring,49100,135,1998,1705,5.8,5,5
Mercedes,E 200 T-Modell,48903,135,1991,1705,6.2,5,5
Chevrolet,Camaro Cabriolet 2.0 Turbo,48000,202,1998,1659,8.1,2,5
BMW,520i,46600,135,1998,1605,5.4,4,5
Mercedes,E 200 Coupee,46494,135,1991,1645,6.5,3,5
Cadillac,CTS 2.0 Turbo,45350,203,1998,1659,7.8,4,5
Audi,A6 Avant 1.8 TFSI ultra,45200,140,1798,1710,5.9,5,5
Jaguar,XF 20t,45060,147,1997,1635,6.8,4,5
Volvo,V90 T4,44900,140,1969,1851,6.9,5,5
VW,T6 California 2.0 TSI BMT,44833,110,1984,2264,9.5,4,5
Ford,Mustang Convertible 2.3 EcoBoost,43500,213,2261,1715,9.1,2,5
Volvo,S90 T4,43450,140,1969,1800,6.7,4,5
Mercedes,E 200,43019,135,1991,1575,6.1,4,5
Audi,A6 1.8 TFSI ultra,42700,140,1798,1645,5.7,4,5
Ford,Mustang Convertible 2.3 EcoBoost,42500,233,2261,1715,8.2,2,5
Chevrolet,Camaro Coupee 2.0 Turbo,40400,202,1998,1539,8,2,5
Ford,Mustang Fastback 2.3 EcoBoost,39000,213,2261,1655,9,2,5
VW,T6 Caravelle 2.0 TSI BMT,38645,110,1984,1862,9.1,4,5
Ford,Mustang Fastback 2.3 EcoBoost,38000,233,2261,1655,8,2,5
VW,T6 Multivan 2.0 TSI BMT,36902,110,1984,2007,9.2,4,5
VW,Arteon 1.5 TSI ACT,35325,110,1498,1504,5.1,5,5
VW,T6 Transporter Kombi 2.0 TSI BMT Normaldach,33832,110,1984,1862,9.1,4,5
Skoda,Superb Combi 1.4 TSI,26750,92,1395,1395,5.6,5,5
Skoda,Superb 1.4 TSI,25750,92,1395,1375,5.6,5,5
Mercedes,Maybach G 650,749700,463,5980,2580,17,5,6
Ford,GT,500000,475,3497,1385,14.9,2,6
Rolls-Royce,Phantom 6.8 V12,446250,420,6749,2560,13.9,4,6
Lamborghini,Aventador S Roadster LP740-4,373262,544,6498,1625,16.9,2,6
Mercedes,Maybach S 650 Cabriolet,357000,463,5980,2115,12,2,6
Lamborghini,Aventador S LP740-4,335055,544,6498,1575,16.9,2,6
Rolls-Royce,Dawn 6.6 V12,329630,420,6592,2560,14.2,2,6
Bentley,Mulsanne,297191,377,6752,2685,15,4,6
Bentley,Continental Supersports Convertible,291253,522,5998,2455,15.9,2,6
Rolls-Royce,Wraith 6.6 V12,285898,465,6592,2435,14.3,2,6
Porsche,911 GT2 RS,285220,515,3800,1545,11.8,2,6
Ferrari,812.,282934,588,6496,1630,14.9,2,6
Rolls-Royce,Ghost 6.6 V12,277657,420,6592,2435,14.3,4,6
Aston Martin,Vanquish Volante,268995,424,5935,1919,12.8,3,6
Bentley,Continental Supersports,264775,522,5998,2280,15.7,2,6
Mercedes,S 65 AMG Cabriolet,257457,463,5980,2255,12,2,6
Aston Martin,Vanquish,253995,424,5935,1814,12.8,3,6
McLaren,720S,247350,527,3994,1322,10.7,2,6
Ferrari,F488 Spider,236750,493,3902,1525,11.4,2,6
Mercedes,G 500 4x4,231693,310,3982,3021,13.8,5,6
Ferrari,GTC4Lusso T,226246,449,3855,1870,11.6,2,6
Ferrari,F488 GTB,212653,493,3902,1475,11.4,2,6
McLaren,570S Spider,208975,419,3799,1573,10.7,2,6
Bentley,Bentayga W12,208488,447,5950,2440,12.8,5,6
Lamborghini,Urus,204000,478,3996,2200,12.7,5,6
Aston Martin,DB11 Volante V8,199000,375,3982,1870,9.9,3,6
Bentley,Continental GT W12,198492,467,5950,2244,12.2,2,6
Lamborghini,Huracn Spyder LP580-2,196350,426,5204,1509,12.1,2,6
McLaren,570GT,195350,419,3799,1515,10.7,2,6
Aston Martin,Rapide S,193995,411,5935,2065,12.9,5,6
Aston Martin,V12 Vantage S Roadster,192741,421,5935,1745,14.7,3,6
Bentley,Continental GT Convertible V8,192066,373,3993,2470,10.9,2,6
Porsche,911 Turbo Cabriolet,190020,397,3800,1740,9.3,2,6
Mercedes,S 63 AMG Cabriolet,190013,430,5461,2185,10.4,2,6
Porsche,911.,189544,368,3996,1445,13.3,2,6
McLaren,570S,185400,419,3799,1515,10.7,2,6
Ferrari,California T,184689,412,3855,1730,10.7,2,6
Aston Martin,DB11 V8,184000,375,3982,1760,9.9,3,6
Bentley,Flying Spur V8,183855,373,3993,2417,10.9,4,6
Donkervoort,D8 GTO-RS,182070,284,2480,695,8,2,6
Aston Martin,V12 Vantage S,179950,421,5935,1680,17,3,6
Lamborghini,Huracn LP580-2,178500,426,5204,1389,11.9,2,6
Mercedes,S 63 AMG Coupee,177310,450,3982,2080,9.3,2,6
Porsche,911 Turbo Coupee,176930,397,3800,1670,9.1,2,6
Mercedes,S 63 AMG Coupee,175436,430,5461,2070,10.1,2,6
Bentley,Continental GT V8,174573,373,3993,2370,10.6,2,6
McLaren,540C,163200,397,3799,1446,10.7,2,6
Mercedes,SL 63 AMG,161959,430,5461,1845,9.8,2,6
Mercedes,S 63 AMG,160293,450,3982,2070,8.9,4,6
Porsche,Panamera Sport Turismo Turbo,158604,404,3996,2110,9.4,5,6
Porsche,Panamera Turbo,155748,404,3996,2070,9.3,5,6
Audi,R8 Spyder 5.2 FSI V10,153000,397,5204,1755,12.6,2,6
Porsche,911.,152416,368,3996,1488,12.9,2,6
BMW Alpina,B7 Bi-Turbo,149400,447,4395,2110,10.4,4,6
Porsche,911.,146228,331,2981,1660,9.7,2,6
Mercedes,G 63 AMG,145359,420,5461,2550,13.8,5,6
Maserati,GranCabrio Sport,144320,338,4691,1980,14.5,2,6
Jaguar,XJR575,143900,423,5000,1875,11.1,4,6
Mercedes,S 500 Cabriolet,140545,335,4663,2115,8.5,2,6
Audi,R8 Coupee 5.2 FSI V10,140000,397,5204,1665,12.4,2,6
Mercedes,Maybach S 560,139700,345,3982,2240,8.8,4,6
Porsche,911 Carrera Cabriolet,138850,331,2981,1595,9.4,2,6
Donkervoort,D8 GTO-S,138040,254,2480,740,8,2,6
BMW,M6 Cabrio,137200,412,4395,2055,10.3,2,6
BMW Alpina,B6 Bi-Turbo Cabriolet,137200,441,4395,2095,9.6,2,6
BMW Alpina,B6 Bi-Turbo Gran Coupee,135800,441,4395,2030,10.4,4,6
Aston Martin,V8 Vantage S Roadster,135520,321,4735,1710,13.8,2,6
Mercedes,GLS 63 AMG,135482,430,5461,2580,12.3,5,6
BMW,M6 Gran Coupee,134500,412,4395,1950,9.9,4,6
Land Rover,Range Rover Sport SVR,132200,423,5000,2310,12.8,5,6
BMW,M6 Coupee,129600,412,4395,1925,9.9,2,6
Land Rover,Range Rover Sport SVR,129600,405,5000,2330,12.8,5,6
BMW Alpina,B6 Bi-Turbo Coupee,129200,441,4395,1940,9.4,2,6
Mercedes,AMG GT Roadster,129180,350,3982,1670,9.4,2,6
Maserati,GranTurismo Sport,129020,338,4691,1880,14.3,2,6
Aston Martin,V8 Vantage AMR,126995,320,4735,1610,13.8,3,6
Porsche,911 Carrera Coupee,125760,331,2981,1525,9.4,2,6
Chevrolet,Corvette Z06 Cabriolet,124700,485,6162,1734,12.7,2,6
Land Rover,Range Rover 5.0 V8 SC,121800,375,5000,2336,12.8,5,6
Chevrolet,Corvette Z06 Coupee,119700,485,6162,1734,12.7,3,6
Audi,S8 cod,118500,382,3993,2050,9.4,4,6
Porsche,911.,118382,272,2981,1645,8.9,2,6
Mercedes,AMG GT Coupee,117280,350,3982,1615,9.3,2,6
Porsche,911 Carrera Cabriolet,111004,272,2981,1575,8.5,2,6
Porsche,911 Carrera T Coupee,107553,272,2981,1500,9.5,2,6
Mercedes,G 500,106701,310,3982,2595,12.3,5,6
Audi,A8 4.0 TFSI cod,104400,320,3993,1955,8.9,4,6
Mercedes,S 450 Coupee,101656,270,2996,2050,8.9,2,6
Chevrolet,Corvette Grand Sport Cabriolet 6.2 V8,100900,343,6162,1614,12.3,2,6
Mercedes,S 400 Coupee,100561,270,2996,2035,8.3,2,6
Cadillac,Escalade 6.2 V8,99900,313,6162,2710,12.6,5,6
Mercedes,SL 400,99341,270,2996,1735,7.7,2,6
Porsche,911 Carrera Coupee,97914,272,2981,1505,8.3,2,6
Porsche,Panamera Sport Turismo 4,97557,243,2995,1955,7.8,5,6
Maserati,Quattroporte,97430,257,2979,1860,9.1,4,6
Chevrolet,Corvette Grand Sport Coupe 6.2 V8,95900,343,6162,1588,12.3,3,6
Land Rover,Range Rover Sport 5.0 V8 SC,94900,375,5000,2306,12.8,5,6
Jaguar,XJ 3.0 V6 Kompressor,93800,250,2995,1865,9.8,4,6
BMW,740i,93000,240,2998,1800,6.8,4,6
Mercedes,S 450,92255,270,2987,1995,6.6,4,6
Porsche,Panamera,90655,243,2995,1890,7.5,5,6
BMW,640i Cabrio,90600,235,2979,1895,7.7,2,6
Chevrolet,Corvette Stingray Cabriolet 6.2 V8,85400,343,6162,1664,12.3,2,6
BMW,640i Gran Coupe,83900,235,2979,1825,7.6,4,6
BMW,640i Coupe,81900,235,2979,1760,7.6,2,6
Chevrolet,Corvette Stingray Coupe 6.2 V8,80400,343,6162,1614,12.3,3,6
Mercedes,GLS 400,77029,245,2996,2435,8.9,5,6
Cadillac,CT6 3.0 V6,73500,307,2997,1879,9.6,4,6
Land Rover,Range Rover Sport 2.0 Si4,65600,221,1997,2083,9.2,5,6
Land Rover,Range Rover Evoque Coupe Si4,62200,213,1998,1833,7.6,3,3
BMW,M2 Coupe,59500,272,2979,1570,8.5,2,3
Mercedes,CLA 45 AMG Shooting Brake,57804,280,1991,1615,6.9,5,3
Mercedes,CLA 45 AMG,57209,280,1991,1585,6.9,4,3
Mercedes,GLA 45 AMG,56852,280,1991,1585,7.4,5,3
Audi,RS3 Limousine,55900,294,2480,1590,8.3,4,3
Land Rover,Range Rover Evoque Cabriolet Si4,55300,177,1998,2013,8.2,2,3
Audi,RS3 Sportback,54600,294,2480,1585,8.3,5,3
Mercedes,A 45 AMG,51527,280,1991,1555,6.9,5,3
Audi,S3 Cabriolet,51150,228,1984,1710,6.7,2,3
VW,Golf R Variant,45350,228,1984,1593,7.1,5,3
Subaru,Impreza WRX STi 2.5,44500,221,2457,1527,10.9,4,3
Land Rover,Range Rover Evoque Si4,43850,177,1998,1752,8.2,5,3
Audi,S3 Limousine,43250,228,1984,1505,7,4,3
Audi,S3 Sportback,42350,228,1984,1505,7,5,3
Jaguar,E-Pace P250,42350,183,1998,1832,7.7,5,3
Subaru,Impreza WRX STi 2.5,41550,221,2457,1575,10.4,4,3
Audi,S3,41450,228,1984,1480,7,3,3
VW,Golf R,41175,228,1984,1483,7.8,3,3
Ford,Focus RS,40675,257,2261,1560,7.7,5,3
Infiniti,QX30 2.0t,40150,155,1991,1542,6.7,5,3
Lotus,Elise,39900,100,1598,876,6.3,2,3
MINI,John Cooper Works Countryman,39500,170,1998,1615,7.4,5,3
BMW,X2 sDrive20i,39200,141,1998,1535,5.5,5,3
MINI,John Cooper Works Clubman,36800,170,1998,1550,7.4,5,3
Opel,Astra OPC,36360,206,1998,1550,7.8,3,3
Honda,Civic Type R,36050,235,1996,1380,7.7,5,3
SEAT,Leon ST Cupra 300,35930,221,1984,1440,7,5,3
Peugeot,308.,35350,200,1598,1280,6,5,3
SEAT,Leon Cupra 300,34730,221,1984,1395,6.9,5,3
SEAT,Leon SC Cupra 300,34340,221,1984,1375,6.9,3,3
VW,Touran 1.2 TSI BMT,34300,81,1197,1436,5.5,5,3
BMW,218i Cabrio,34200,100,1499,1575,5.5,2,3
VW,Golf Alltrack 1.8 TSI BMT,34125,132,1798,1537,6.7,5,3
Mazda,CX-5 SKYACTIV-G 160,32190,118,1998,1495,6.8,5,3
BMW,X1 sDrive18i,31700,103,1499,1475,5.5,5,3
Audi,A3 Cabriolet 1.4 TFSI,31450,85,1395,1430,5.3,2,3
Volvo,XC40 T3,31350,114,1498,1725,6.8,5,3
Ford,Focus Turnier ST 2.0 EcoBoost Start/Stopp,30550,184,1999,1461,6.8,5,3
VW,Golf GTI,30425,169,1984,1364,6.4,3,3
Mercedes,CLA 180 Shooting Brake,30274,90,1595,1430,5.5,5,3
Mazda,MX-5 RF SKYACTIV-G 160,29890,118,1998,1120,6.9,2,3
BMW,218i Coupe,29750,100,1499,1420,5.1,2,3
Hyundai,i30 N,29700,184,1998,1475,7,5,3
Mercedes,CLA 180,29679,90,1595,1395,5.4,4,3
Ford,Focus ST 2.0 EcoBoost Start/Stopp,29600,184,1999,1437,6.8,5,3
Mercedes,GLA 180,28941,90,1595,1395,5.7,5,3
Audi,Q3 1.4 TFSI,28700,92,1395,1460,5.8,5,3
BMW,216i Gran Tourer,28600,75,1499,1475,5.3,5,3
Volvo,V40 Cross Country T3,28280,112,1969,1569,5.6,5,3
BMW,216i Active Tourer,27350,75,1499,1415,5.4,5,3
VW,Tiguan 1.4 TSI,26975,92,1395,1490,6.1,5,3
Mercedes,B 160,26638,75,1595,1395,5.5,5,3
Audi,A3 Limousine 1.0 TFSI,25550,85,999,1260,4.4,4,3
Honda,Civic Limousine 1.5 Turbo,25520,134,1498,1321,5.7,4,3
DS Automobiles,DS 4 Crossback PureTech 130 Stop&Start,25490,96,1199,1330,4.9,5,3
KIA,pro_ceed GT,25390,150,1591,1395,7.4,3,3
KIA,ceed GT,25390,150,1591,1382,7.4,5,3
Fiat,124 Spider 1.4 Multiair Turbo,24990,103,1368,1125,6.4,2,3
Fiat,124 Spider 1.4 Multiair Turbo,24990,103,1368,1125,6.4,2,3
Hyundai,Veloster 1.6 Turbo,24990,137,1591,1333,6.9,4,3
SEAT,Leon X-PERIENCE 1.4 TSI Start&Stop,24950,92,1395,1263,5.3,5,3
VW,Scirocco 1.4 TSI BMT,24950,92,1395,1280,5.4,3,3
Jeep,Compass 1.4 Multiair 140,24900,103,1368,1505,6.2,5,3
Volvo,V40 T2,24850,90,1969,1546,5.6,5,3
VW,Caddy Alltrack 1.2 TSI BMT,24782,62,1197,1350,6.1,5,3
BMW,116i,24700,80,1499,1375,5.3,3,3
Mercedes,A 160,24681,75,1595,1370,5.4,5,3
Audi,A3 Sportback 1.0 TFSI,24650,85,999,1255,4.5,5,3
Honda,Civic Tourer 1.8,24590,104,1798,1355,6.2,5,3
Skoda,Karoq 1.0 TSI,24290,85,999,1340,5.1,5,3
Infiniti,Q30 1.6t,24200,90,1595,1407,5.7,5,3
MINI,One Countryman,24000,75,1499,1440,5.5,5,3
DS Automobiles,DS 4 PureTech 130 Stop&Start,23990,96,1199,1330,4.9,5,3
KIA,pro_ceed 1.0 T-GDI 120 ISG,23990,88,998,1271,4.9,3,3
Opel,Zafira 1.4 Turbo,23950,88,1364,1628,6.8,5,3
Audi,A3 1.0 TFSI,23750,85,999,1225,4.5,3,3
Opel,Grandland X 1.2 DI Turbo Start&Stop,23700,96,1199,1350,5.4,5,3
Renault,Grand Sconic ENERGY TCe 115,23690,85,1197,1505,6.1,5,3
VW,Beetle Cabriolet 1.2 TSI BMT,23450,77,1197,1395,5.4,2,3
Audi,Q2 1.0 TFSI ultra,23400,85,999,1280,5.1,5,3
Ford,Kuga 1.5 EcoBoost Start/Stopp,23300,88,1498,1579,6.3,5,3
Peugeot,3008 1.2 PureTech 130,23250,96,1199,1325,5.1,5,3
Mazda,MX-5 SKYACTIV-G 131,22990,96,1496,1050,6,2,3
Subaru,XV 1.6i,22980,84,1600,1408,6.4,5,3
VW,Caddy Beach 1.2 TSI BMT,22943,62,1197,1350,6.1,5,3
MINI,One Clubman,22850,75,1499,1375,5.1,5,3
Hyundai,Tucson 1.6 GDI blue ,22740,97,1591,1454,6.3,5,3
Hyundai,i30 Fastback 1.0 T-GDI,22200,88, 998,1460,5.2,5,3
Toyota,C-HR 1.2 T,21990,85,1197,1320,5.9,5,3
Subaru,Impreza 1.6i,21980,84,1600,1359,6.2,5,3
VW,Golf Variant 1.0 TSI BMT,21850,81,999,1295,4.9,5,3
Mazda,3 SKYACTIV-G 120,21790,88,1998,1280,5.1,4,3
Toyota,Verso 1.6,21765,97,1598,1505,6.8,5,3
Alfa Romeo,Giulietta 1.4 TB 16V,21500,88,1368,1355,6.2,5,3
Opel,Astra GTC 1.4 Turbo,21360,88,1364,1437,6.3,3,3
Toyota,Corolla 1.6,21220,97,1598,1270,6,4,3
Citroen,Grand C4 Picasso PureTech 130 Stop&Start,20990,96,1199,1370,5,5,3
Ford,Grand C-MAX 1.0 EcoBoost Start/Stopp,20850,74,998,1493,5.2,5,3
Nissan,Qashqai 1.2 DIG-T,20490,85,1197,1350,5.6,5,3
VW,Golf Sportsvan 1.0 TSI,20475,63,999,1335,4.9,5,3
VW,Golf Sportsvan 1.2 TSI BMT,20475,63,1197,1320,5,5,3
VW,T-Roc 1.0 TSI,20390,85,999,1270,5.1,5,3
Ford,Tourneo Connect 1.0 EcoBoost Start/Stopp,20249,74,998,1474,5.6,5,3
Opel,Astra 1.6,20220,85,1598,1405,6.8,4,3
Honda,Civic 1.0 Turbo,19990,95,988,1229,4.8,5,3
KIA,Carens 1.6 GDI,19990,99,1591,1458,6.5,5,3
KIA,Sportage 1.6 GDI,19990,97,1591,1397,6.7,5,3
Mercedes,Citan Tourer lang 112,19990,84,1192,1440,6.2,5,3
Renault,Sconic ENERGY TCe 115,19990,85,1197,1503,5.8,5,3
Renault,Kadjar ENERGY TCe 130,19990,96,1197,1381,5.7,5,3
SEAT,Ateca 1.0 TSI Ecomotive,19990,85,999,1280,5.2,5,3
SsangYong,Korando 2.0 e-XGi 200,19990,110,1998,1612,7.5,5,3
Subaru,XV 1.6i,19990,84,1600,1370,6.5,5,3
Peugeot,308 SW 1.2 PureTech 110,19800,81,1199,1265,4.7,5,3
Suzuki,SX4 S-Cross 1.0 Boosterjet,19790,82,998,1165,5,5,3
Citroen,C4 Picasso PureTech 110 Stop&Start,18990,81,1199,1355,5.1,5,3
Mitsubishi,ASX 1.6 ClearTec,18990,86,1590,1335,5.7,5,3
Ford,Focus 1.0 EcoBoost Start/Stopp,18700,74,998,1303,4.8,4,3
Peugeot,308 1.2 PureTech 110,18700,81,1199,1155,4.6,5,3
Subaru,Impreza 1.6i,18600,84,1600,1380,6.2,5,3
Opel,Astra Sports Tourer 1.4,18550,74,1399,1273,5.7,5,3
VW,Caddy 1.2 TSI BMT,18528,62,1197,1350,6.1,4,3
Mitsubishi,Lancer 1.6 ClearTec,18490,86,1590,1305,5.5,4,3
Mitsubishi,Lancer Sportback 1.6 ClearTec,18490,86,1590,1345,5.5,5,3
Renault,Megane Grandtour ENERGY TCe 100,18490,74,1197,1366,5.4,5,3
Hyundai,i30 Kombi 1.4,18450,74,1368,1285,5.6,5,3
VW,Caddy Kombi 1.2 TSI BMT,18445,62,1197,1350,6.1,4,3
Nissan,Pulsar 1.2 DIG-T,18270,85,1197,1265,5,5,3
Ford,C-MAX 1.6 Ti-VCT,18250,63,1596,1374,6.4,5,3
Mazda,3 SKYACTIV-G 100,18190,74,1496,1260,5.1,5,3
VW,Golf 1.0 TSI BMT,18075,63,999,1206,4.8,3,3
Fiat,DoblKombi 1.4 16V,17990,70,1368,1370,7.4,5,3
SEAT,Toledo 1.2 TSI,17990,66,1197,1156,4.7,5,3
Citroen,Berlingo Kombi VTi 95,17850,72,1598,1395,6.4,4,3
Peugeot,Partner Tepee VTi 98,17850,72,1598,1550,6.4,4,3
Ford,Focus Turnier 1.6 Ti-VCT,17700,63,1596,1300,6,5,3
Toyota,Auris Touring Sports 1.33,17690,73,1329,1250,5.6,5,3
Opel,Astra 1.4,17550,74,1399,1244,5.5,5,3
Renault,Megane ENERGY TCe 100,17490,74,1197,1280,5.4,5,3
SsangYong,XLV 1.6 e-XGi 160,17490,94,1597,1390,7.1,5,3
Hyundai,i30 1.4,17450,74,1368,1244,5.4,5,3
Citroen,C4 PureTech 110,17240,81,1199,1275,4.8,5,3
Renault,Kangoo ENERGY TCe 115,17150,84,1197,1395,6.2,4,3
SEAT,Leon ST 1.2 TSI,16640,63,1197,1233,5.1,5,3
Toyota,Auris 1.33,16490,73,1329,1225,5.5,5,3
Fiat,Tipo Kombi 1.4 16V,16450,70,1368,1280,5.7,5,3
Ford,Focus 1.6 Ti-VCT,16450,63,1596,1264,5.9,5,3
KIA,ceed Sportswagon 1.4,16190,73,1368,1279,6,5,3
Skoda,Rapid 1.0 TSI,15890,70,999,1170,4.4,5,3
Skoda,Rapid Spaceback 1.0 TSI,15790,70,999,1165,4.4,5,3
SEAT,Leon 1.2 TSI,15490,63,1197,1188,5.1,5,3
Fiat,Tipo 1.4 16V,15450,70,1368,1270,5.7,5,3
Opel,Combo Combi 1.4,15110,70,1364,1445,7.4,5,3
SEAT,Leon SC 1.2 TSI,14990,63,1197,1168,5.1,3,3
KIA,ceed 1.4,14490,73,1368,1254,6,5,3
Fiat,Tipo 1.4 16V,14450,70,1368,1225,5.7,4,3
Dacia,Lodgy Stepway TCe 115 Start&Stop,14200,85,1197,1278,5.6,5,3
Dacia,Dokker Stepway TCe 115 Start&Stop,13600,85,1197,1280,5.7,5,3
Citroen,C-Elysee PureTech 82,12990,60,1199,1055,4.8,4,3
Lada,Vesta 1.6 16V,12740,78,1596,1250,6.1,4,3
Dacia,Logan MCV Stepway TCe 90 Start&Stop,12200,66,898,1165,5.1,5,3
Lada,Urban 1.7,11990,61,1690,1285,9.5,3,3
Dacia,Duster SCe 115,11290,84,1598,1262,6.6,5,3
Lada,Taiga 1.7,10790,61,1690,1285,9.5,3,3
Dacia,Duster SCe 115 Start&Stop,10690,84,1598,1165,6.4,5,3
Dacia,Lodgy SCe 100 Start&Stop,9990,75,1598,1211,6.1,5,3
Dacia,Dokker SCe 100 Start&Stop,8990,75,1598,1239,6.2,4,3
Lada,Granta 1.6 8V,8500,64,1596,1080,6.6,5,3
Dacia,Logan MCV SCe 75,7990,54,998,1091,5.4,5,3
Lada,Granta 1.6 8V,7260,64,1596,1080,6.6,4,3
\ No newline at end of file
dataset,x,y
dino,55.3846,97.1795
dino,51.5385,96.0256
dino,46.1538,94.4872
dino,42.8205,91.4103
dino,40.7692,88.3333
dino,38.7179,84.8718
dino,35.641,79.8718
dino,33.0769,77.5641
dino,28.9744,74.4872
dino,26.1538,71.4103
dino,23.0769,66.4103
dino,22.3077,61.7949
dino,22.3077,57.1795
dino,23.3333,52.9487
dino,25.8974,51.0256
dino,29.4872,51.0256
dino,32.8205,51.0256
dino,35.3846,51.4103
dino,40.2564,51.4103
dino,44.1026,52.9487
dino,46.6667,54.1026
dino,50,55.2564
dino,53.0769,55.641
dino,56.6667,56.0256
dino,59.2308,57.9487
dino,61.2821,62.1795
dino,61.5385,66.4103
dino,61.7949,69.1026
dino,57.4359,55.2564
dino,54.8718,49.8718
dino,52.5641,46.0256
dino,48.2051,38.3333
dino,49.4872,42.1795
dino,51.0256,44.1026
dino,45.3846,36.4103
dino,42.8205,32.5641
dino,38.7179,31.4103
dino,35.1282,30.2564
dino,32.5641,32.1795
dino,30,36.7949
dino,33.5897,41.4103
dino,36.6667,45.641
dino,38.2051,49.1026
dino,29.7436,36.0256
dino,29.7436,32.1795
dino,30,29.1026
dino,32.0513,26.7949
dino,35.8974,25.2564
dino,41.0256,25.2564
dino,44.1026,25.641
dino,47.1795,28.718
dino,49.4872,31.4103
dino,51.5385,34.8718
dino,53.5897,37.5641
dino,55.1282,40.641
dino,56.6667,42.1795
dino,59.2308,44.4872
dino,62.3077,46.0256
dino,64.8718,46.7949
dino,67.9487,47.9487
dino,70.5128,53.718
dino,71.5385,60.641
dino,71.5385,64.4872
dino,69.4872,69.4872
dino,46.9231,79.8718
dino,48.2051,84.1026
dino,50,85.2564
dino,53.0769,85.2564
dino,55.3846,86.0256
dino,56.6667,86.0256
dino,56.1538,82.9487
dino,53.8462,80.641
dino,51.2821,78.718
dino,50,78.718
dino,47.9487,77.5641
dino,29.7436,59.8718
dino,29.7436,62.1795
dino,31.2821,62.5641
dino,57.9487,99.4872
dino,61.7949,99.1026
dino,64.8718,97.5641
dino,68.4615,94.1026
dino,70.7692,91.0256
dino,72.0513,86.4103
dino,73.8462,83.3333
dino,75.1282,79.1026
dino,76.6667,75.2564
dino,77.6923,71.4103
dino,79.7436,66.7949
dino,81.7949,60.2564
dino,83.3333,55.2564
dino,85.1282,51.4103
dino,86.4103,47.5641
dino,87.9487,46.0256
dino,89.4872,42.5641
dino,93.3333,39.8718
dino,95.3846,36.7949
dino,98.2051,33.718
dino,56.6667,40.641
dino,59.2308,38.3333
dino,60.7692,33.718
dino,63.0769,29.1026
dino,64.1026,25.2564
dino,64.359,24.1026
dino,74.359,22.9487
dino,71.2821,22.9487
dino,67.9487,22.1795
dino,65.8974,20.2564
dino,63.0769,19.1026
dino,61.2821,19.1026
dino,58.7179,18.3333
dino,55.1282,18.3333
dino,52.3077,18.3333
dino,49.7436,17.5641
dino,47.4359,16.0256
dino,44.8718,13.718
dino,48.7179,14.8718
dino,51.2821,14.8718
dino,54.1026,14.8718
dino,56.1538,14.1026
dino,52.0513,12.5641
dino,48.7179,11.0256
dino,47.1795,9.8718
dino,46.1538,6.0256
dino,50.5128,9.4872
dino,53.8462,10.2564
dino,57.4359,10.2564
dino,60,10.641
dino,64.1026,10.641
dino,66.9231,10.641
dino,71.2821,10.641
dino,74.359,10.641
dino,78.2051,10.641
dino,67.9487,8.718
dino,68.4615,5.2564
dino,68.2051,2.9487
dino,37.6923,25.7692
dino,39.4872,25.3846
dino,91.2821,41.5385
dino,50,95.7692
dino,47.9487,95
dino,44.1026,92.6923
away,32.3311102266,61.411101248
away,53.4214628807,26.1868803879
away,63.92020226,30.8321939163
away,70.2895057187,82.5336485877
away,34.1188302357,45.7345513203
away,67.6707164012,37.110947969
away,53.2591294055,97.4757710964
away,63.5149808671,25.1000785788
away,67.9805388133,80.9571652197
away,67.3724659005,29.720400203
away,15.5607495229,80.0656402858
away,71.7907676942,71.0654666627
away,70.2425464362,24.1095975542
away,64.9374355444,81.5542049945
away,62.2135245453,21.4758389969
away,67.2694004772,18.7089683725
away,40.5701970446,79.3729634752
away,74.7411813341,21.1016372041
away,71.7683189223,20.0110618423
away,76.1669198143,75.9361704048
away,65.6236574431,15.5828033531
away,50.8506336394,13.9876016304
away,33.0240700249,24.4678303872
away,39.7063261674,84.2752871038
away,45.5964849542,9.76334884943
away,42.9680469104,17.9454583961
away,52.4944067819,16.0511142003
away,46.0822757831,23.1104578154
away,74.2477082092,20.314187812
away,64.5682641863,83.6396338956
away,74.0216939058,76.1282745076
away,62.3911805626,5.62307076073
away,74.189036683,68.1335832223
away,28.2367819396,56.1395964513
away,75.7719387944,69.8292300322
away,75.8552294691,62.5170442862
away,65.9708570175,72.7448559954
away,21.7780404779,6.61662530728
away,67.7597962473,72.4212015285
away,78.6171953363,52.5752573142
away,68.5077081898,15.4569189652
away,74.8850211598,25.4166063231
away,66.4549036599,19.8366286542
away,77.3178020985,48.3983464352
away,58.9124603193,75.6677562173
away,57.617447817,8.19480060319
away,76.0882257967,59.6799300235
away,57.4660505497,1.50441817488
away,79.4283834934,45.2107942872
away,76.3565221496,10.4182411281
away,64.4050752632,78.5841760758
away,40.6350418091,73.3947503698
away,43.9498645857,75.9587156671
away,30.9962205791,71.694404938
away,68.2307689907,80.8725016628
away,72.0463894612,12.9180067349
away,46.5927679682,84.9723827774
away,49.2572183396,81.8814032306
away,42.7817612539,12.9911884302
away,65.475952195,14.2745856444
away,71.9650826544,17.7102359443
away,32.1464623358,43.4817094425
away,31.8384976954,71.8121653901
away,31.0052582572,40.682503007
away,80.4708943189,49.5021483467
away,71.9641671122,41.8742826668
away,78.0794214417,93.1333167652
away,41.6775957748,30.2012640846
away,65.953595185,31.1474060835
away,62.9344593731,31.9163906992
away,64.3737979844,28.8625834061
away,72.5093283599,39.5401302526
away,30.0522898741,96.6175423534
away,28.0033242354,46.6721919544
away,75.4012268619,88.6390766207
away,38.9800154218,87.322160691
away,65.2199135479,84.6829549336
away,73.0539899616,29.3808085571
away,34.3983616372,59.5444469033
away,43.4904501336,40.782542065
away,55.138737967,30.7257603575
away,43.6843934333,32.8230098696
away,35.9036097344,91.1118630801
away,45.3780188805,29.1692166544
away,39.7774828713,43.75581895
away,38.6644611569,33.3172384774
away,39.0440366877,84.6760108316
away,91.6399614428,79.4066030605
away,47.4881326771,85.3899333808
away,44.5902125769,22.0340116412
away,39.0896145478,70.4661940802
away,42.2293783752,19.9140684075
away,37.0003871448,60.264279248
away,39.0520864793,70.6525028457
away,37.4884147432,60.8144048511
away,69.3595594592,65.5213545959
away,43.542775926,62.4603112824
away,39.8112302539,65.3348328092
away,70.0689259404,7.59346560899
away,70.0405435824,77.1438066024
away,39.505789079,74.8516272173
away,62.5168908529,66.4847322418
away,72.1399254065,0.0151193251552
away,45.2515760666,70.0034213192
away,42.0633045627,2.33519661206
away,36.3556951539,6.0058486497
away,30.3918276596,42.75961287
away,36.4490038543,50.5462690659
away,40.467576002,60.0275120878
away,81.7246168002,6.03754484635
away,48.8231974964,76.6353305783
away,35.6205617651,57.2860155789
away,50.5839631148,71.8066161014
away,61.8564651063,71.7927431642
away,39.3237560262,59.3008196656
away,42.1856791429,66.0348978235
away,30.8469189898,37.3416401041
away,29.3462004281,42.1487418312
away,82.1105579783,1.21055166293
away,38.3020058088,60.0177857932
away,56.5841530218,70.512514809
away,33.3393742865,0.5091067352
away,78.7742390407,35.4841012146
away,27.9226442446,25.9868781844
away,71.6978651182,10.8681445111
away,74.1383313856,49.1739189791
away,32.579020066,1.80811559665
away,59.83218542,69.1525081443
away,35.0306285457,12.5366493416
away,74.3001198284,42.4770945921
away,63.2501970628,65.9524861966
away,34.1730737648,25.6936743092
away,40.9138319319,38.5590195509
away,62.8332930874,62.5108942269
away,42.4767923803,56.7312899691
away,52.0334562787,64.5666620298
away,48.9070429644,74.2877488252
away,59.8518383854,72.9583909677
away,48.9604602016,72.6295257275
away,46.8448551673,36.7917136918
away,39.9630215796,42.9449148487
away,66.704943997,32.0150954299
h_lines,53.366566866,90.2080300059
h_lines,52.8019793617,90.0880645063
h_lines,47.0541298828,90.458936026
h_lines,42.4484337816,89.5077001153
h_lines,42.7040363241,90.4426288607
h_lines,32.3789386326,90.144142631
h_lines,32.5307027362,70.1573965085
h_lines,33.3652644305,70.4593354392
h_lines,32.6560991775,70.0510704992
h_lines,22.9550932697,70.4268951523
h_lines,27.1498436318,70.2108058428
h_lines,26.1669092779,70.5003151212
h_lines,26.3314570795,50.494556525
h_lines,22.0037091415,50.4994401238
h_lines,23.2847479782,50.4743528321
h_lines,27.6340383923,50.5036668574
h_lines,32.0371080007,50.5000661229
h_lines,29.3365106528,50.461893969
h_lines,40.816953133,50.4877601957
h_lines,42.7390751173,50.483155992
h_lines,51.8678937691,50.4932732621
h_lines,43.3710018924,50.5008373234
h_lines,53.0427983006,50.4875038691
h_lines,56.6189102967,50.5033740178
h_lines,70.568289819,50.4962361243
h_lines,67.870887292,70.0680261345
h_lines,58.8215465891,70.4557817483
h_lines,60.1869278445,70.4835512458
h_lines,59.4355174849,50.4206326073
h_lines,49.5858434795,50.4349813825
h_lines,41.7797417848,50.4706422808
h_lines,46.1276863394,30.4494107792
h_lines,38.0337837705,50.4908995189
h_lines,44.5468412844,50.4159133758
h_lines,46.2381175975,30.4956129408
h_lines,49.7397453317,30.4727248868
h_lines,39.1102518936,30.4786951789
h_lines,39.1428377913,30.7928559394
h_lines,34.6254702671,30.4997410297
h_lines,34.7542074707,30.4958650002
h_lines,36.7537002386,50.5293043035
h_lines,37.0193512929,50.4926666972
h_lines,41.4171152753,50.4697734181
h_lines,22.8171074784,30.4360403387
h_lines,34.800701463,30.4979313851
h_lines,27.8918897953,30.4849702595
h_lines,32.8706391587,30.5023417488
h_lines,37.7940494081,30.4926383364
h_lines,35.6673163042,30.522035054
h_lines,48.4422995026,30.5017227753
h_lines,58.6693732631,30.5068378948
h_lines,47.9169554375,30.4867257545
h_lines,51.8941663939,30.494755684
h_lines,51.7490891643,30.4729933399
h_lines,58.2465530013,50.4428744949
h_lines,57.3106968674,50.4825132895
h_lines,67.9680481127,50.4521589097
h_lines,65.9493192681,50.494240794
h_lines,55.7470928102,50.4789748003
h_lines,68.4030100436,50.4986272318
h_lines,76.696465628,50.4938305609
h_lines,67.2148371159,70.2600284356
h_lines,72.3020057291,70.2204373812
h_lines,66.7632573944,70.4738617113
h_lines,51.6803004439,89.9970275485
h_lines,53.0965573571,89.540243712
h_lines,42.2422929389,89.7085785936
h_lines,56.2338756577,89.635308157
h_lines,54.6809865825,89.9645994589
h_lines,57.9026866088,89.6184017294
h_lines,51.8202625467,89.8341303987
h_lines,56.8283953362,89.5836647251
h_lines,58.2722785867,69.9002729578
h_lines,51.8281274487,70.3526492053
h_lines,44.8499842618,70.3952029719
h_lines,24.2703823928,50.4855676918
h_lines,34.7424714403,70.3399348879
h_lines,37.7993149267,70.4695358763
h_lines,49.7869410649,89.6580469945
h_lines,59.751497414,89.7319325216
h_lines,64.7747992444,90.132316736
h_lines,70.8444476004,89.9242090159
h_lines,70.6059455116,90.042061963
h_lines,78.6424883907,89.5512032307
h_lines,70.810692254,89.5926540118
h_lines,66.7699466213,70.4233752108
h_lines,73.3363681612,70.3169271705
h_lines,73.1051481627,70.300511881
h_lines,74.6782541432,70.4453141903
h_lines,80.240250951,70.3543089613
h_lines,70.9468490729,50.4727017878
h_lines,88.6626638086,50.4553260208
h_lines,84.405952832,50.4948658866
h_lines,75.9871047068,50.4919669557
h_lines,91.1120854191,50.489389393
h_lines,98.2881232748,30.603919371899998
h_lines,95.0652748396,30.5004028652
h_lines,95.2492339568,30.4594542144
h_lines,49.6561262881,50.4313198677
h_lines,63.0186009279,30.4925819262
h_lines,70.5382006004,30.4835582526
h_lines,70.0868697658,30.5100448173
h_lines,62.6856904424,30.5464245575
h_lines,69.239417959,30.5060052447
h_lines,80.4002336791,30.4850063746
h_lines,74.6478782284,30.6738628584
h_lines,65.9952727194,30.4750241915
h_lines,67.0885590036,30.4945239508
h_lines,59.8525770283,10.5431877763
h_lines,53.7489900744,10.5225745323
h_lines,58.2390955164,10.4948990284
h_lines,54.810300495,10.7249292845
h_lines,52.9767123211,10.859490276
h_lines,52.2038939272,10.4956369212
h_lines,50.7451622429,10.5249055723
h_lines,42.7131936166,10.4875472428
h_lines,45.3172255098,10.4958733944
h_lines,53.116915041,10.5068605973
h_lines,57.049801823,10.5081369414
h_lines,54.8546309465,10.4639151924
h_lines,54.9248425638,10.498331942
h_lines,63.3095540306,10.4888142392
h_lines,49.7494984129,10.4858029097
h_lines,41.1693104232,10.4973002433
h_lines,46.6883404976,10.5075321353
h_lines,52.4189219215,10.4959063596
h_lines,50.8784883796,10.5030898746
h_lines,57.0533061394,10.5140692392
h_lines,70.7864511597,10.5136950409
h_lines,56.7721495656,10.5032723508
h_lines,75.4772220231,10.5185680355
h_lines,76.7659121498,10.496999064
h_lines,77.621049129,10.4958742318
h_lines,65.4144870523,10.6818401251
h_lines,69.9647805002,10.5072329326
h_lines,64.9697382623,10.4821595117
h_lines,38.0502407785,30.4079460343
h_lines,42.2241202189,30.4980371582
h_lines,87.6984642949,50.4899365296
h_lines,52.3603310701,89.7043170068
h_lines,51.4067867898,89.7121385499
h_lines,43.588468468,89.7455365536
v_lines,50.4815081703,93.2227013657
v_lines,50.2824056687,97.6099835723
v_lines,50.1867033389,99.6946801425
v_lines,50.3269108629,90.0220534916
v_lines,50.4562073315,89.9874101286
v_lines,30.4648469308,82.0892320845
v_lines,30.5015964737,82.3071263462
v_lines,30.489569227,77.7298801366
v_lines,30.45024833,79.8348944011
v_lines,30.5183947985,68.2525829388
v_lines,30.5116612138,66.0937181831
v_lines,30.4980777147,62.3849850338
v_lines,30.6202277519,60.8600821544
v_lines,30.4921854231,55.8789168923
v_lines,30.474634333,52.3221596388
v_lines,30.500998079,48.0696996767
v_lines,30.4944213623,45.7734755346
v_lines,30.4995445502,49.3820997506
v_lines,50.144392979,47.0142836417
v_lines,49.9128985877,55.5878389121
v_lines,50.3374274859,57.9553142818
v_lines,50.4189791992,60.5249117346
v_lines,50.2052589714,57.9242171676
v_lines,50.4353151633,56.4393224734
v_lines,69.5057889042,59.2849248279
v_lines,69.5340709833,64.8929773346
v_lines,69.5101069302,61.3296244282
v_lines,69.5263228876,56.9952791254
v_lines,49.9472399619,48.2295767261
v_lines,50.0631041291,58.085037556
v_lines,50.489902373,39.2054119682
v_lines,49.6888638379,42.018514414
v_lines,50.3334811097,43.588671479
v_lines,50.4467514196,57.2305889423
v_lines,50.4209091963,43.3479568967
v_lines,50.3740520508,32.9182406167
v_lines,30.4768299051,39.4246055913
v_lines,30.5034743497,38.3485561381
v_lines,30.5048349283,28.7714879939
v_lines,30.4622184647,32.7504720275
v_lines,30.491302622,43.5613740753
v_lines,30.449653838,44.9951230008
v_lines,30.4859942157,47.3479464653
v_lines,30.5020767935,36.4412129198
v_lines,30.4780588886,28.020580489
v_lines,30.5011608787,38.3141385582
v_lines,30.5047730174,26.4166256707
v_lines,30.509115326,22.8255471196
v_lines,50.1156321728,16.6940065479
v_lines,50.4483013392,21.6402564599
v_lines,50.17317743,29.177864393
v_lines,49.9227419194,38.4404729124
v_lines,50.3112993746,26.8604882737
v_lines,50.3994096114,38.9638389234
v_lines,50.3373626448,40.913386144
v_lines,50.2023180965,47.2129480045
v_lines,50.2749326091,49.6234993439
v_lines,69.4943803061,52.6124107059
v_lines,69.5193397556,47.384533707
v_lines,69.5291826079,57.8412666804
v_lines,69.495755496,58.785073162
v_lines,69.199057706,60.4189573202
v_lines,69.5510914402,58.4010982686
v_lines,69.5066843151,68.0844667893
v_lines,50.4441175504,75.0132995059
v_lines,50.4672293846,90.281464505
v_lines,50.210881979,80.9417717084
v_lines,50.205406955,90.6405359009
v_lines,50.4382906648,92.3547602661
v_lines,50.3735188462,82.2192057218
v_lines,50.253683689,81.7438287242
v_lines,50.2504708592,71.9513852104
v_lines,50.0870583609,73.9518736268
v_lines,50.2310718829,80.6473870602
v_lines,50.2077411201,73.1145035177
v_lines,30.4995061735,53.6125276703
v_lines,30.5203612407,65.1004090686
v_lines,30.4549558873,63.5017787814
v_lines,50.4164772292,97.2696919618
v_lines,69.5250693831,93.5980502089
v_lines,69.5202566002,97.1938760167
v_lines,69.4989700668,92.1204899292
v_lines,69.5286156637,91.6220882409
v_lines,69.4997669273,84.47968329
v_lines,69.5038013697,81.8154056166
v_lines,69.4875893963,81.8359875567
v_lines,69.5191157281,71.1159672213
v_lines,69.5043762947,70.4934438205
v_lines,69.5125730109,61.497563947
v_lines,89.4942005622,62.2343269676
v_lines,89.5001240511,53.2163306165
v_lines,89.490246254,48.890796551
v_lines,89.49778562,46.6299066746
v_lines,89.5048511306,48.4234081578
v_lines,89.5010526463,43.3473436951
v_lines,89.4888412549,40.6250912209
v_lines,89.5016235276,45.8151791904
v_lines,89.497529662,33.901372671
v_lines,50.4390920216,37.670771798
v_lines,50.179850128,36.8075593352
v_lines,69.5050706711,33.7401525035
v_lines,69.5798670452,21.9352367455
v_lines,69.5064719492,22.7286628748
v_lines,69.4994788728,16.3374699821
v_lines,69.500264751,27.1360239942
v_lines,69.5041565157,23.6689181006
v_lines,69.5322795847,21.8509008151
v_lines,69.5001114942,11.7916260054
v_lines,69.5048154243,15.6143582625
v_lines,69.5034745234,17.1690897689
v_lines,50.3774019862,16.5060150613
v_lines,50.3394254813,18.7234506861
v_lines,50.0936501016,11.6077134241
v_lines,49.9341271714,22.2561397401
v_lines,50.2888186122,13.436410466
v_lines,50.2879944267,12.8722822086
v_lines,50.2347207,20.4044729196
v_lines,50.2797016367,15.608737571
v_lines,50.2530067222,11.3020842468
v_lines,50.4741411162,12.4619966676
v_lines,50.1084399725,18.2590443442
v_lines,49.919058249,3.7168538855
v_lines,50.0836645085,10.2358819024
v_lines,50.3522608355,12.4686005273
v_lines,50.4975722411,7.40962523419
v_lines,50.0163058346,16.2536847911
v_lines,50.4682212165,13.3567024555
v_lines,69.5506789842,9.03298756904
v_lines,69.5186727475,15.1804864298
v_lines,69.5034574098,16.8783132661
v_lines,69.4994868291,10.2078266798
v_lines,69.5275296829,9.99229666551
v_lines,69.5190952617,11.4226857018
v_lines,69.5618994268,15.9998037858
v_lines,69.5010445197,5.95583353945
v_lines,69.524635976,2.73476016988
v_lines,30.4995937106,26.0855615691
v_lines,30.487391709,19.7794703733
v_lines,89.5001804719,31.9789174357
v_lines,50.4102716314,98.6283694405
v_lines,50.3259243927,94.9946308528
v_lines,50.1040315041,95.0885380179
x_shape,38.3377571839,92.472719051
x_shape,35.7518707905,94.1167680276
x_shape,32.7672179591,88.5182945794
x_shape,33.7296067755,88.622265789
x_shape,37.238249327,83.7249284144
x_shape,36.0271982243,82.0407806505
x_shape,39.2392807768,79.2637238398
x_shape,39.7845249391,82.2605658962
x_shape,35.1660293896,84.1564919839
x_shape,40.622115916,78.5421042089
x_shape,39.181907086,79.8190371976
x_shape,42.4308889944,75.1336346406
x_shape,43.0812558617,75.3467016413
x_shape,44.360719434400004,70.4742070546
x_shape,44.3247788435,71.0459044019
x_shape,47.552160202,66.4604037217
x_shape,48.6649246215,64.9610049438
x_shape,46.280631958,68.0284231525
x_shape,50.5632444849,62.6238279659
x_shape,52.6309642318,59.9639357915
x_shape,54.6362064446,57.4938424367
x_shape,51.346027139,61.6005530364
x_shape,57.134855354,53.8779658045
x_shape,54.1712415737,58.0598078952
x_shape,50.9423823071,62.0973939351
x_shape,66.512924456,59.0712818478
x_shape,64.3979095023,56.1748754008
x_shape,68.686593294,62.2373439902
x_shape,65.0277937057,57.0962573525
x_shape,53.3045031712,40.883844549
x_shape,52.9451780881,40.3846256942
x_shape,45.225738199,30.5552259226
x_shape,50.8433046202,37.7446280981
x_shape,49.6592939398,36.273442735
x_shape,47.1427889348,32.0250641734
x_shape,41.2700565259,21.7218171465
x_shape,47.1301271555,31.3099029222
x_shape,40.9159715783,23.5415923929
x_shape,38.6601639737,21.6895496369
x_shape,42.6125508262,24.195053774
x_shape,41.2090395008,24.1287091891
x_shape,50.6492211499,37.4837907435
x_shape,52.1319019406,39.3646020815
x_shape,39.7972712705,16.083549649
x_shape,43.5498814807,24.3072109395
x_shape,36.7146633371,17.3818098572
x_shape,37.2246101278,17.9800644828
x_shape,40.5124478537,22.9622145725
x_shape,40.2220627884,20.6146217044
x_shape,44.1249612057,23.3662452858
x_shape,42.3462616039,24.5583269437
x_shape,44.1890843708,28.772625473
x_shape,45.8142453101,31.056979672
x_shape,46.6431192691,31.4072190618
x_shape,52.1898883047,39.3677964938
x_shape,51.1003173587,38.095699984
x_shape,65.4008341477,42.6140320392
x_shape,64.8520398267,43.1337348404
x_shape,63.4038060118,44.847493688
x_shape,65.3715488709,42.6959713164
x_shape,61.9080397046,53.1903520694
x_shape,71.8266529973,65.6862303604
x_shape,72.6546231621,66.8782776113
x_shape,76.8885781632,72.1654720777
x_shape,43.7446196844,71.2679610751
x_shape,39.0542484428,83.1190207043
x_shape,39.9316746322,79.9391880033
x_shape,39.762826107,76.4059674459
x_shape,41.323383287,80.2118685969
x_shape,41.7873232275,83.9880779935
x_shape,39.7556490651,79.6570966361
x_shape,40.7498793985,77.204657286
x_shape,43.8568984983,77.6098436482
x_shape,42.3678224956,73.6382718294
x_shape,39.4629598364,78.459973898
x_shape,44.5173339492,70.3693498252
x_shape,41.6360929963,76.2492229205
x_shape,45.4229321817,69.0955016709
x_shape,42.0028562742,97.8376147235
x_shape,76.1056290282,95.3049805754
x_shape,79.2025626772,92.4072156264
x_shape,84.8482440854,95.4248045304
x_shape,81.5644753207,83.7929072262
x_shape,85.4461864009,83.0782938448
x_shape,80.3124913784,76.5162389518
x_shape,80.7662322969,79.8960656796
x_shape,82.6701124763,81.711479845
x_shape,77.1636254828,73.5237189623
x_shape,74.0707000309,68.4795642895
x_shape,74.1142308687,71.9263635185
x_shape,68.942075458,62.635150577
x_shape,73.2420023309,67.3532711288
x_shape,71.8670131631,34.3291575887
x_shape,71.5691888532,34.699218607
x_shape,71.4829096934,34.6805169926
x_shape,78.1285220512,23.139231835
x_shape,78.789825254,25.5971933466
x_shape,77.7815467962,23.4472144745
x_shape,48.5306293681,34.1524500077
x_shape,65.5307814724,42.2810847015
x_shape,70.1180341426,36.4481847905
x_shape,70.4722626065,36.0880530553
x_shape,76.7911300701,28.0720081685
x_shape,72.4093545935,33.0392569664
x_shape,76.271299815,25.5695441452
x_shape,76.9532591384,27.7706107405
x_shape,75.1077300904,30.0169834157
x_shape,75.9692852004,29.0388653753
x_shape,75.2838870131,24.8747531721
x_shape,77.0522406385,27.9056390894
x_shape,42.8267563374,25.5569594065
x_shape,42.0806606852,24.9465264454
x_shape,39.8783046498,18.3249292157
x_shape,36.4754991726,17.7189477884
x_shape,37.1030736419,15.4456116477
x_shape,34.1489682077,13.5238698677
x_shape,37.5794219113,15.0158901333
x_shape,41.0643057894,12.2144689321
x_shape,42.195266147,20.9193721857
x_shape,36.6055782383,15.748875885
x_shape,39.4311612098,19.3238407541
x_shape,37.5620763361,11.9284457044
x_shape,34.2381100444,13.7131582305
x_shape,34.1409410386,4.57766135024
x_shape,36.6592676972,17.6819644553
x_shape,40.6437192795,20.2408613716
x_shape,36.7924815919,13.3921347304
x_shape,75.9483006427,22.7447959146
x_shape,76.8406924717,20.9185472197
x_shape,81.9504776395,19.8745582085
x_shape,81.6437056853,16.5917599845
x_shape,84.6102197758,14.2477619017
x_shape,84.1028794336,8.98065579006
x_shape,80.18002545,19.0888441297
x_shape,80.5732729943,8.36563890168
x_shape,79.0043268649,10.6281977654
x_shape,40.0481864651,24.2614879334
x_shape,34.7945935378,13.9696834611
x_shape,79.221764441,22.0945914837
x_shape,36.0308797708,93.1217332374
x_shape,34.4995583102,86.6099850511
x_shape,31.1068665551,89.4616352367
star,58.2136082599,91.881891513
star,58.1960536923,92.2149886482
star,58.7182307185,90.310532087
star,57.27837287,89.9076067166
star,58.082020494,92.0081450101
star,57.4894477748,88.0852855629
star,28.088741319,63.5107944263
star,28.0854682136,63.5901969481
star,28.087273053,63.1232828116
star,27.5780252176,62.8210386566
star,27.7799191139,63.518147517
star,28.5889998149,63.0240805653
star,28.7391414969,62.7208638859
star,27.0246032407,62.9018588649
star,28.8013366963,63.389040388
star,27.186463838,63.5587296478
star,29.2851466002,63.3836058254
star,39.4029453026,51.1508571967
star,28.8113284396,61.3578540576
star,34.3039579069,56.5421259093
star,29.6027609801,60.157346722
star,49.1161568603,63.6600006211
star,39.6175458263,62.9251879574
star,43.23308466,63.1652187223
star,64.8927879422,65.8141767574
star,62.4901493154,74.5842896072
star,68.9880844294,63.232147305
star,62.1056186306,75.9908707599
star,32.4618467439,62.8819029189
star,41.3272006535,49.0702512739
star,44.0071499323,46.4496737846
star,44.0740606888,34.5532038906
star,44.0013152386,33.9042073544
star,45.0063004454,38.2990195507
star,44.4438406096,36.0190833012
star,42.1787133986,26.492119482
star,44.0445656189,35.6622382764
star,41.6404540171,27.0930954213
star,41.9383300069,24.9915229793
star,44.0539275103,33.5563924949
star,39.2067193308,51.5337156971
star,28.7044492315,61.7775254006
star,31.7086628996,58.837754374
star,42.8117114739,30.0204484197
star,43.300614891,31.5264261979
star,40.3986329069,16.3470083822
star,40.4356915763,20.2326706762
star,40.9365466658,16.9130048364
star,39.6615736653,15.609355577
star,40.899259175,20.7985289466
star,41.9686168283,26.4970725985
star,40.3834058238,21.3912255247
star,56.5381264538,32.4442454697
star,52.9706912828,29.0401966941
star,54.6209525885,30.3445244537
star,65.0990443941,27.2415575588
star,63.0559909076,29.7090956748
star,70.9601362323,41.2595012867
star,69.8958192404,43.4537592655
star,70.5958928563,41.9647438672
star,69.6470214273,44.044445022
star,77.392982494,63.3714590552
star,64.4007871926,67.4487184472
star,63.8689598271,70.2137388333
star,56.5944213157,86.9270062202
star,56.5313372853,87.4998110713
star,59.6521583697,87.8094615921
star,56.6365087005,85.637495556
star,58.6722880025,90.077160307
star,58.2216127264,90.4110187715
star,57.9146644768,89.9538027677
star,55.3155090581,80.2518606944
star,54.5757285877,77.5362884724
star,54.4130936504,78.2290865878
star,55.0745059041,79.8175464166
star,29.4329605156,60.8017765444
star,29.4226860665,63.0684648229
star,29.0056141576,63.3907513334
star,58.4618385916,90.2653263904
star,57.997804739,92.1599086113
star,57.5494740761,90.7489065581
star,59.5299284566,88.3272741451
star,58.2493910631,92.1296814778
star,58.0245140126,91.6944211685
star,58.3821244904,90.5534760692
star,62.5667590405,77.7439347591
star,72.1758243064,63.1289294176
star,79.4727615693,63.4086861199
star,80.3577008812,63.2954375404
star,78.7572361375,53.3326200111
star,82.5402395934,56.5410522935
star,86.4358971909,59.7927618087
star,79.4886844186,53.6516742641
star,81.5304203188,56.0253645659
star,79.1867885665,53.2347918468
star,77.8990579454,51.8224583343
star,75.1307142075,23.3724419733
star,76.0580137544,16.383749688200002
star,57.6146743876,33.8224476502
star,56.1713975295,32.1179887719
star,66.2878905956,26.1171097453
star,67.8817196169,24.2360184109
star,64.0280813016,27.6726855125
star,77.4966517463,14.9485235577
star,77.6346517616,14.461853927
star,77.8637264289,14.6106776491
star,77.3381581659,15.890054658
star,76.1804165329,15.9125737458
star,77.2526510945,15.1515170246
star,77.4133752817,15.2219279762
star,76.7318493982,16.2168461441
star,49.471105411800004,25.0630193062
star,42.4765399431,18.3384735636
star,43.5951158622,19.9942009773
star,50.3399696652,26.4713966117
star,40.7489802561,16.1821416622
star,38.3865255803,14.5802151464
star,38.4040152085,14.4519484496
star,38.7642788913,14.3655904744
star,41.4701423265,17.2780334445
star,47.1554048146,22.3779325323
star,39.5825667453,17.6484528361
star,41.7402438167,17.8293243101
star,39.3118718889,15.6407169743
star,41.6798476925,17.7459190133
star,39.0874644519,15.1223039378
star,41.4815028637,18.0474374446
star,77.6060865492,15.1628725383
star,75.9826615205,16.3069223786
star,76.9457572424,15.858478334
star,77.5437200743,15.253949149
star,77.5847398447,15.8300393854
star,76.8223042562,15.5951653195
star,77.3485716647,15.7745292395
star,77.5731526867,14.7806458332
star,77.9726106776,14.9556987461
star,41.5289197586,24.9164251896
star,43.7225508034,19.0773278036
star,79.3260781751,52.9003912897
star,56.6639740815,87.9401250067
star,57.8217892319,90.6931665489
star,58.2431718991,92.1043278652
high_lines,57.6132335477,83.9051707998
high_lines,51.2743918205,82.8179829379
high_lines,50.7538984114,76.7541289533
high_lines,37.0211840116,81.954469997
high_lines,42.8817550897,80.1847700514
high_lines,37.1557104777,84.9541114129
high_lines,38.7318581261,83.7893564281
high_lines,31.0005254108,82.5794805962
high_lines,25.9854996226,74.3493875478
high_lines,23.7145662909,75.0980490792
high_lines,23.077319507,71.7205396747
high_lines,24.9391368744,72.5802858084
high_lines,17.8934987136,71.1096873431
high_lines,23.6730818572,64.8708391385
high_lines,23.7490719056,63.557171895
high_lines,32.2151786343,65.6009580191
high_lines,29.4368412489,67.5545281141
high_lines,40.0500951983,71.8890335708
high_lines,37.5747950188,69.9887444412
high_lines,49.3104686263,67.1687603206
high_lines,47.3480185524,72.5916115408
high_lines,50.157414434,71.1617258246
high_lines,58.2100082697,68.0445380719
high_lines,56.6089076561,70.4089460888
high_lines,52.8338205303,72.5518862725
high_lines,61.8185854576,76.1128240228
high_lines,61.7276334143,77.0692384058
high_lines,62.1922520815,76.1568192103
high_lines,58.1187658587,73.1189614684
high_lines,58.2704123843,35.5968950425
high_lines,59.7665303129,32.6212516009
high_lines,52.5355347207,27.1741229419
high_lines,50.8925215809,29.1452839382
high_lines,49.9675511775,28.4602033343
high_lines,51.3478832298,27.3642602259
high_lines,37.5551162883,24.5376638386
high_lines,39.1995941778,23.6804956588
high_lines,36.3827221955,25.2380052325
high_lines,41.1006943822,26.5526132161
high_lines,28.2178118248,28.2802924847
high_lines,33.7970720433,28.6997507433
high_lines,43.9193873055,27.7978445882
high_lines,44.4164011084,28.9476923345
high_lines,28.0376027706,26.8038243613
high_lines,31.6895761296,26.6664002089
high_lines,27.2796128523,19.2572809685
high_lines,31.2218783581,26.4408557812
high_lines,33.5458051034,20.0807081014
high_lines,39.7363306065,23.4948069772
high_lines,42.8418426525,20.3339004396
high_lines,47.0937298879,26.9934706312
high_lines,51.4536583539,26.0229417521
high_lines,49.3677068167,22.005580703
high_lines,48.2534809736,29.2708555331
high_lines,61.0029597643,30.0153144324
high_lines,60.8065608049,27.8683134861
high_lines,59.0674270249,26.7882840217
high_lines,61.4146337175,31.0393750583
high_lines,68.934369469200007,31.6198930866
high_lines,63.0652438592,34.2357465852
high_lines,72.2725228706,67.6444437851
high_lines,75.3598819664,75.4216145799
high_lines,72.8336258709,72.1146938095
high_lines,70.8104148392,79.3504618327
high_lines,45.8019347617,81.6582677456
high_lines,45.835020171,82.7425919919
high_lines,40.0788064496,80.2471852579
high_lines,51.9829247003,82.2043834675
high_lines,57.337906053,84.9995188696
high_lines,62.3362327624,83.2465678988
high_lines,58.5059100905,81.7455863409
high_lines,56.2479351377,83.513949493
high_lines,55.4065208295,80.2666719669
high_lines,53.2839688423,84.2635992213
high_lines,44.6767615455,80.2382855483
high_lines,30.0112642472,68.1467563743
high_lines,29.7452539206,74.4045268347
high_lines,37.3099483549,72.5861552003
high_lines,61.1359469093,82.5375693646
high_lines,61.7206191907,85.7056934492
high_lines,63.6093798555,83.3600288362
high_lines,70.7237162322,87.1522075165
high_lines,75.0063926418,82.4258351563
high_lines,75.0925497814,83.4373907092
high_lines,70.3279291834,82.0293546968
high_lines,70.8633308324,79.4081747457
high_lines,75.7799048195,79.8861994199
high_lines,78.0936590733,77.759558184
high_lines,76.7457612243,71.9733600919
high_lines,78.4646034437,69.7493008209
high_lines,76.7456848486,70.0440572588
high_lines,85.161682187,65.5124047088
high_lines,91.8083525691,34.9655944844
high_lines,91.8874485924,34.7692538555
high_lines,92.2484016622,32.3771544295
high_lines,91.782532741,34.3842946521
high_lines,96.0805193672,28.0536005018
high_lines,92.2478988278,28.0707514904
high_lines,57.662276619,24.0606079328
high_lines,59.8469248931,26.1777124879
high_lines,64.0670962137,27.7765005568
high_lines,60.9815013975,23.9342981582
high_lines,59.9670579092,26.8025832185
high_lines,62.7074541119,21.9955085787
high_lines,69.1952352018,22.709792166
high_lines,65.5923626471,20.6941731019
high_lines,64.6170985343,22.4431455531
high_lines,59.191159132,17.767901807
high_lines,55.8396313724,21.6185696663
high_lines,59.0007586238,21.1710074885
high_lines,56.4593711284,25.1445642082
high_lines,52.3581053558,19.4170541222
high_lines,51.8116637782,17.0334945954
high_lines,54.222845621,19.503665544
high_lines,49.0187553996,23.4892740197
high_lines,35.6535812004,17.5145080595
high_lines,46.965785757,16.7892016247
high_lines,49.5842392555,16.7579160147
high_lines,51.8562999655,21.969084007
high_lines,55.9528886329,16.7897576048
high_lines,51.6637862607,19.9251251977
high_lines,45.8596693166,17.1289036754
high_lines,39.7403795202,18.7410514146
high_lines,52.8112216438,17.8549881176
high_lines,56.7891043639,17.3061155207
high_lines,54.1145317806,17.6735343896
high_lines,55.571119732,17.369574581
high_lines,65.3064624975,18.1973548277
high_lines,66.9907491546,17.2228706509
high_lines,72.1567189391,16.8142747914
high_lines,70.9805804021,17.15575228
high_lines,72.2220822073,19.3692816955
high_lines,79.7001583481,20.740218365
high_lines,64.2491606461,14.9139624607
high_lines,66.9432914334,20.1891325034
high_lines,66.9416766634,18.2435093914
high_lines,39.6482666468,22.7313663718
high_lines,37.9497836858,26.5217492344
high_lines,86.5043905611,34.8940252874
high_lines,50.8154853559,78.950838805
high_lines,51.1834666638,85.1288546497
high_lines,40.8638552293,82.9261452983
dots,51.1479167122,90.8674123313
dots,50.5171258092,89.1023945866
dots,50.2074801993,85.4600473951
dots,50.0694819181,83.0576695262
dots,50.562846338600004,82.9378217764
dots,50.288527801,82.9752535659
dots,25.5834750822,82.9148911324
dots,25.4835833896,82.929084979
dots,25.4435257049,82.8742004973
dots,25.5651134237,82.9240977704
dots,25.9288442731,82.8211841087
dots,27.5514782612,51.4873865306
dots,27.5304663693,51.4148465629
dots,27.0955703605,52.0767994399
dots,27.4392496133,51.7120790527
dots,27.8782642594,50.70890793
dots,27.3388689181,51.6530467544
dots,27.6784029741,51.1819891691
dots,52.6356576791,51.4185522584
dots,52.0252141055,52.1230110467
dots,52.8811647904,50.6215547554
dots,52.9526073133,50.0747390118
dots,52.5205524936,51.5024421035
dots,52.3428220582,51.8619520908
dots,51.9275902141,52.2577906065
dots,52.7137744894,51.1979443188
dots,50.4438027888,82.9418288173
dots,50.2166950326,83.7523429676
dots,52.1841801076,51.9752506714
dots,52.7920973459,51.0733956509
dots,52.5897198565,51.338090196
dots,52.0288486671,52.1768375002
dots,52.729246581,51.2017650475
dots,52.8843132864,50.4414354501
dots,52.5093008862,51.4162051508
dots,50.8626843321,17.1456310914
dots,50.8914922458,17.1413237277
dots,25.8551275976,17.0819086886
dots,26.0256445518,16.9250135319
dots,27.8931727187,50.6619634101
dots,27.6399679354,51.3990974838
dots,27.892658895,50.7952815163
dots,52.7977329399,50.6860370901
dots,27.5806388053,51.5247612607
dots,26.4913985349,17.4053909738
dots,25.9853178159,17.203722132
dots,26.2014192753,17.0938239128
dots,25.857569474600002,17.113842659
dots,50.7046843629,17.0237445436
dots,50.8119753465,17.1149252621
dots,50.564845557699996,17.0777773216
dots,50.9393039127,16.981021883
dots,50.4588548392,17.0385789686
dots,52.9013640729,50.6905627231
dots,52.6849534438,51.2944692191
dots,52.500088943,51.594356165
dots,51.8356372562,52.3357655339
dots,76.9954121013,52.0455286534
dots,77.310600475,51.7467300374
dots,77.9260443352,50.3186604237
dots,77.2543883433,51.4618248152
dots,76.2431578028,52.1236898503
dots,77.0844843669,51.9671367003
dots,75.2280531954,82.9856620201
dots,50.6583547714,83.1144793358
dots,50.2033658114,82.9826568621
dots,50.9295476993,82.8460411252
dots,50.1786718465,83.1846223323
dots,50.422698058,82.9099014671
dots,50.4642248341,82.9353284131
dots,50.4492703306,83.9699203811
dots,49.9283802752,82.9936654888
dots,50.4880136436,83.0995191232
dots,49.9649053793,83.7083177013
dots,50.7521082559,82.9019500961
dots,27.4224292143,51.4388762325
dots,27.6740833991,51.3041121452
dots,27.5373953151,51.593654076200004
dots,52.2633473764,94.2493278274
dots,51.7372816586,92.9791175339
dots,75.8709636929,88.3864417377
dots,75.2443262052,83.9034973788
dots,75.1982952889,83.4623033365
dots,75.7010415321,82.9194588559
dots,75.4793396586,82.8840513891
dots,75.1945668739,82.9321157846
dots,74.8202539551,82.9623887856
dots,75.1643404933,83.0349971693
dots,75.2633555474,82.9452793018
dots,77.7564189331,51.1517703255
dots,77.9544350549,50.4755789715
dots,77.0833377719,52.1577992662
dots,76.0635502513,52.1046520613
dots,77.6820163247,51.1656378096
dots,76.8780819814,51.8675622958
dots,76.9485027211,51.9075165439
dots,77.8640547124,49.6625455341
dots,75.7714500936,17.1112512057
dots,52.3315691301,51.8788603463
dots,52.5928183721,51.3915915185
dots,50.4770477213,17.0482894119
dots,75.2964750909,17.015653188800002
dots,75.573954129,17.0621921415
dots,75.4005271583,17.0411068868
dots,75.8709908356,17.1348939075
dots,75.6058847579,17.0677230553
dots,75.8955770466,17.1699497051
dots,75.7465632023,17.1057165115
dots,75.1423414811,16.7549238932
dots,50.6617795563,17.0781405153
dots,50.6998506392,17.0851843836
dots,50.9189408654,17.1476047571
dots,50.7252585405,16.9074698083
dots,51.2638712274,17.1623497098
dots,51.2509196468,17.2404558616
dots,50.7851572052,17.1801964842
dots,50.5013965822,17.1057707188
dots,50.7336745372,16.9929634144
dots,50.7113785398,17.0883158538
dots,50.8127448984,16.5727180506
dots,51.014232955,17.2210955293
dots,50.3535214052,17.0647430794
dots,50.4355295722,17.0651685025
dots,50.6309819633,17.0765223454
dots,51.0668072036,17.2088597095
dots,50.7923547263,17.2042143387
dots,50.5512780561,17.0846551833
dots,50.5597580562,17.0938837744
dots,75.3259785471,15.7718919896
dots,75.04472578,17.0042622562
dots,75.2870877232,16.1749349097
dots,75.2399699777,17.0318474866
dots,75.1524592023,17.0049424015
dots,75.9618400861,16.6948422289
dots,75.4480625064,17.0451494125
dots,75.7593838168,16.9429296545
dots,50.378262298,16.9462798113
dots,50.5336350094,17.0195813691
dots,77.5009073165,50.1669859475
dots,50.6911241884,87.5139604241
dots,49.9903949511,83.997356924
dots,50.1271820272,82.990749996
circle,55.9930301513,79.2772636977
circle,50.0322537946,79.013071199
circle,51.2884586593,82.4359398425
circle,51.1705368873,79.1652941091
circle,44.3779145287,78.1646280036
circle,45.0102700721,77.8808631153
circle,48.559816719,78.7883706035
circle,42.1422682922,76.8806345544
circle,41.0269715735,76.4095884613
circle,34.5753090115,72.7248411845
circle,31.1686007236,69.2454213193
circle,32.6442540714,70.7325550334
circle,26.6666456539,62.9809712052
circle,26.4592623274,62.6346733709
circle,25.5380076465,60.6302361093
circle,26.3207111933,62.3962811186
circle,26.1633874648,62.0268148985
circle,25.2137904611,60.2733986018
circle,26.8595295604,63.1418346727
circle,31.7606691716,69.7976553936
circle,39.7932905744,75.8079642168
circle,45.6174391854,78.1199702277
circle,53.7714606827,79.3029316435
circle,56.4514336733,79.2471070208
circle,66.0937201989,77.0178182606
circle,56.9258394194,79.2063186226
circle,58.9882538467,78.9172589554
circle,57.9022660533,79.0808678187
circle,64.8128669568,77.4869389235
circle,60.3497935166,78.7294458673
circle,48.890555756,16.8065435154
circle,47.549506348,17.0714045245
circle,30.8894308257,26.3290372348
circle,28.972835724,29.0504689185
circle,35.1613607523,22.7868496473
circle,45.8703691685,17.4893933655
circle,32.8314206076,24.7975381459
circle,39.4855747899,20.0330500489
circle,33.4461829314,24.1906434075
circle,21.8635812756,46.0525933457
circle,25.1658708449,35.7666139539
circle,22.9594789762,51.2877067934
circle,25.5860552415,60.8465833585
circle,26.3143100672,33.2971681038
circle,33.037301251,24.5644624921
circle,36.4688894772,21.8761144725
circle,26.5135531009,32.9187498178
circle,36.0270912125,22.1954385395
circle,42.6810404129,18.5425361977
circle,45.0410771273,17.7345177303
circle,47.3524164557,17.1347454264
circle,53.8461940322,16.3873180961
circle,55.1296393835,16.3532468711
circle,52.188119961699996,16.4182174652
circle,58.6726630845,16.6633724322
circle,82.1443116037,33.1952218669
circle,75.6865711383,24.7415103908
circle,85.344964503,52.886419866
circle,83.8446535127,58.6160602305
circle,85.66476066,45.5427527692
circle,77.931004934,68.6900618808
circle,73.0318330209,73.12057473
circle,70.1028044999,75.6832068542
circle,57.1446946889,79.1941025922
circle,46.9624619942,78.6665589963
circle,50.5649338128,79.0772985529
circle,53.7196765696,79.306936167
circle,54.2002323226,79.3250023354
circle,47.875198343,78.6758534295
circle,51.4734585149,79.1598669963
circle,52.7512222162,79.2936599344
circle,48.5622230047,78.7823835275
circle,53.0812416908,79.2972507654
circle,56.475383374,79.1678400979
circle,49.570911405,79.0381238831
circle,37.6277032991,74.5575043418
circle,32.2637000863,70.3166389012
circle,32.542380336,70.7024172063
circle,52.8250171923,85.5781338795
circle,58.5282895407,78.9787042541
circle,56.265834263,79.2529394854
circle,57.0758924193,79.1939225382
circle,54.2564023808,79.3138648504
circle,62.6856712475,78.1747432719
circle,68.0856058616,76.1123175001
circle,65.1181219632,77.3991884543
circle,68.7456312971,75.7900554548
circle,63.0902251412,78.041409495
circle,77.2045893204,69.3121497658
circle,82.0339084758,62.6818697859
circle,81.5779459183,63.8949255005
circle,85.1801432805,53.7816766607
circle,84.2868249936,57.2561680896
circle,85.6224867126,45.0241658646
circle,85.6044990156,50.7623379055
circle,84.4247858276,38.761410164
circle,85.570985078,44.5600964397
circle,84.6267242006,39.4870775084
circle,73.3961549252,22.8162479426
circle,73.5074477338,22.8569887644
circle,63.3564881135,17.7240688424
circle,72.9590468722,22.5114998325
circle,64.0208416469,17.8835812521
circle,61.124463241,17.1163533592
circle,75.6742073297,24.7825009657
circle,69.5135831574,20.2793578927
circle,58.5721354669,16.642703808
circle,70.9819409865,21.1458881039
circle,65.2230303973,18.3971951223
circle,65.3150439093,18.3337482986
circle,64.0102406778,17.9244781912
circle,57.1409359294,16.5986105437
circle,56.3651532552,16.3265463742
circle,43.046183241,18.4025593948
circle,52.0817555582,16.4538745312
circle,42.8790365154,18.4894110252
circle,51.5669948027,16.4857136372
circle,58.8391251216,16.6376352154
circle,60.7557891374,17.0332315064
circle,54.7611561181,16.3661890954
circle,53.5699050003,16.3397125506
circle,48.9146182416,16.7986370826
circle,52.6461373069,16.3848363836
circle,49.8384929905,16.6763302777
circle,52.6840664009,16.4079627826
circle,65.8072190346,18.1407649473
circle,60.6739209233,17.0518023644
circle,63.394712866,17.7005351354
circle,64.8020094467,18.2168786335
circle,65.0259398087,18.2878245002
circle,65.7555515404,18.5162158303
circle,69.9677341245,20.5389887758
circle,68.8927840241,20.0324488429
circle,61.8265465579,17.2696554452
circle,60.7879700808,17.0462048583
circle,61.9156096372,17.2821912228
circle,45.0289975331,17.7244473049
circle,39.9213628084,19.7018495281
circle,84.7942778751,55.5686503735
circle,55.6629587449,83.3564796243
circle,50.4922475132,78.997532065
circle,51.4671011416,79.2018445773
bullseye,51.2038911373,83.3397766053
bullseye,58.9744699018,85.499817612
bullseye,51.8720726696,85.8297376348
bullseye,48.1799307865,85.0451167372
bullseye,41.6832004024,84.0179406019
bullseye,37.8904155015,82.5674929978
bullseye,39.5489736947,80.812601774
bullseye,39.6495738769,82.6645338713
bullseye,34.7505970472,80.0110909897
bullseye,27.560835291,72.8478255927
bullseye,24.6355399754,71.6107148256
bullseye,20.9594648125,66.0414983826
bullseye,20.6891490538,62.7213052064
bullseye,19.2882047369,62.0630593582
bullseye,20.0245005746,61.3426238695
bullseye,35.4695229971,43.1158849517
bullseye,36.8943276507,47.7065559687
bullseye,39.0555497751,55.5469737131
bullseye,46.9570801494,65.2404073935
bullseye,37.3104527352,45.2587508999
bullseye,40.0096720019,60.9865825077
bullseye,48.0143866846,65.7128195934
bullseye,53.7037759268,66.3894820363
bullseye,63.0674998921,64.0350004581
bullseye,62.0480325076,63.8458632494
bullseye,59.8399667124,64.4767644437
bullseye,55.1609418175,65.2373081694
bullseye,61.2797865792,65.766402504
bullseye,60.8349175348,64.6037697063
bullseye,61.5205906458,64.7918550418
bullseye,36.916543863,41.0952474383
bullseye,38.5021996714,41.5671556174
bullseye,48.6643707344,30.6806668519
bullseye,50.2852524042,30.3379221051
bullseye,42.276332666,34.5276361236
bullseye,54.0317756204,29.6723483149
bullseye,37.3293552552,39.6020423074
bullseye,41.389522551,37.2960562328
bullseye,40.0746666572,34.6236852027
bullseye,35.3496806211,47.1410731332
bullseye,34.7637004189,47.6247999245
bullseye,37.0266294472,44.4622930512
bullseye,36.4555695327,40.791843032
bullseye,35.5376642131,48.7293868661
bullseye,20.4089478892,32.2030304205
bullseye,23.4957104659,25.3224681542
bullseye,29.5575433634,21.3647774591
bullseye,33.0082339121,15.9850714584
bullseye,53.9803991821,29.3509867092
bullseye,52.2343086004,29.711672986500002
bullseye,59.5030766063,30.6696739448
bullseye,41.1637810689,34.3157582514
bullseye,48.9930401201,32.0303588363
bullseye,59.2692803248,29.6407017654
bullseye,45.4691770035,33.8311927323
bullseye,62.6912665406,30.2903738312
bullseye,73.4286708654,48.5778551303
bullseye,70.846426107,52.282253331
bullseye,71.5390198495,45.5218061588
bullseye,67.6208658884,38.0065584658
bullseye,72.4709525633,51.1221348241
bullseye,64.8122375621,62.8109155873
bullseye,60.8536798727,65.4991470327
bullseye,67.7894961571,61.3637015467
bullseye,41.6095572691,83.8486865559
bullseye,53.0030253202,84.6747986012
bullseye,54.7141710591,84.0431280734
bullseye,44.2916687157,82.9094412144
bullseye,49.1917219555,85.8762291224
bullseye,53.1013817819,84.5476586881
bullseye,51.599848153,84.8198214898
bullseye,54.3797219484,84.2403555494
bullseye,46.4807681047,83.518211666
bullseye,53.174656268,84.2605679876
bullseye,45.272002941,85.2370794195
bullseye,36.03340215,53.371687755
bullseye,28.2711941653,72.840231257
bullseye,25.0548060847,71.5485979221
bullseye,64.7588870014,82.3152236405
bullseye,63.1445274767,85.2366963264
bullseye,50.4246786898,85.1747475891
bullseye,70.6449962629,82.4309187567
bullseye,63.1490490834,83.9468553485
bullseye,62.8240245172,84.9661859507
bullseye,70.236869515,82.1711510621
bullseye,70.0427352449,80.3850213547
bullseye,72.5706234458,80.9712184346
bullseye,75.1307160373,79.9840931403
bullseye,83.2939057345,70.7784317876
bullseye,79.6642622775,73.9323097157
bullseye,88.4321025254,64.6242470023
bullseye,89.1155590082,64.0015066388
bullseye,89.0921976305,57.768193047
bullseye,91.7260057727,52.6233532573
bullseye,91.7355387598,48.9702108877
bullseye,91.5078881747,53.3126520851
bullseye,88.239001904,31.4774348786
bullseye,88.5305192041,30.4760310098
bullseye,55.3651603364,30.4458502777
bullseye,62.5602588694,30.4471356661
bullseye,58.0066691227,30.2537212987
bullseye,55.0671179917,29.0115351997
bullseye,61.6147759612,29.9943911942
bullseye,68.5431435378,35.6578321706
bullseye,77.7061096487,20.3042601852
bullseye,68.4530459999,13.0355285908
bullseye,68.2572064402,12.3846391542
bullseye,70.2554746739,13.2503849689
bullseye,65.0443252778,11.0008414785
bullseye,60.0922466078,11.8721117093
bullseye,52.9920289667,9.90666848335
bullseye,50.1446289773,12.2115430946
bullseye,46.5086141932,11.2071344881
bullseye,43.8070319612,11.3189448865
bullseye,57.8178546865,10.9451424306
bullseye,50.9404926595,9.69154713447
bullseye,63.4973230835,11.9140691707
bullseye,50.0164829541,11.9338520864
bullseye,58.6367650809,11.9747210652
bullseye,54.7302890863,11.4128826732
bullseye,65.8755478023,11.7324363627
bullseye,57.0609827131,9.92056085444
bullseye,46.819907946,10.4946526804
bullseye,38.3593948725,13.431322624
bullseye,47.3154157773,12.853451784
bullseye,55.0519165396,11.9499886181
bullseye,50.5159602579,9.76559162187
bullseye,49.6774146514,10.3831325083
bullseye,67.2806595188,14.1286515323
bullseye,66.1730182606,12.0379170217
bullseye,61.0885441374,10.0845344144
bullseye,66.0530857731,13.3802260073
bullseye,72.6699892655,15.2342259409
bullseye,61.503472503,10.8284144754
bullseye,68.995028632,13.9943105293
bullseye,78.2499161658,17.8832409068
bullseye,36.4819805699,15.1627600944
bullseye,50.9677483784,29.6797742875
bullseye,91.1910536059,46.6743428399
bullseye,55.8637684939,85.3364867573
bullseye,49.2805947987,84.0488228306
bullseye,43.3685015447,84.3321772039
slant_up,47.6952008891,95.2411869282
slant_up,44.6099759113,93.075835032
slant_up,43.8563814822,94.0858717713
slant_up,41.5789293984,90.3035665387
slant_up,49.1774185559,96.6105324538
slant_up,42.6522509813,90.5606397307
slant_up,30.1233318217,81.1442953304
slant_up,31.915519986,79.7904134869
slant_up,27.8877193574,75.4455759934
slant_up,27.5482344526,75.1647590544
slant_up,20.2097781637,67.5166420988
slant_up,24.4434528292,54.4736551228
slant_up,24.6308301331,53.3957388998
slant_up,21.0379688969,49.829299645
slant_up,27.106242932,54.7195531488
slant_up,28.0896176553,60.512212549
slant_up,31.1357349152,61.4319127116
slant_up,37.700837521,68.4184052804
slant_up,43.3926884016,43.5975940692
slant_up,51.2623974761,49.6665051258
slant_up,43.2867129203,43.0568603208
slant_up,55.9059162338,54.2526725342
slant_up,50.198958949,52.2250295948
slant_up,55.761587372,54.0305172396
slant_up,58.3231396505,60.0310591646
slant_up,70.171457528,70.2822212385
slant_up,60.600276471,59.7533088802
slant_up,63.7602750188,61.1856411696
slant_up,54.3894952619,53.811901225
slant_up,55.2412969947,52.5935746267
slant_up,49.0701267502,48.8969446811
slant_up,46.0181190216,46.2577233718
slant_up,44.7595874356,41.9746066134
slant_up,51.6006241332,50.0324668853
slant_up,36.4658820182,35.5241876075
slant_up,33.394798732700004,35.0168013145
slant_up,37.5800715749,38.8315722007
slant_up,36.619722059,36.8114141094
slant_up,36.1634664356,33.819314199
slant_up,33.1677570349,31.2477411672
slant_up,42.6449829318,40.1543216386
slant_up,47.2250252695,44.5756466185
slant_up,48.3923630032,50.3315285645
slant_up,27.2451932001,29.8195074488
slant_up,30.4043143388,29.0795399241
slant_up,30.0807992865,27.5880255173
slant_up,33.9806339675,35.0330581489
slant_up,34.2506117649,34.4415865654
slant_up,51.1411835714,20.6183237784
slant_up,49.899592066,19.5640835356
slant_up,55.5898773424,26.2992451143
slant_up,55.4820563581,22.8274662445
slant_up,63.5729393821,32.9386176053
slant_up,59.0250770848,28.3220858801
slant_up,62.4237785929,33.4865952868
slant_up,47.849907703,48.556624645
slant_up,52.2685616825,52.8052401961
slant_up,68.8510215758,39.573434273
slant_up,65.6763960251,35.1093154301
slant_up,77.7468851148,47.3718241139
slant_up,80.352934115,47.8002988852
slant_up,60.3375864858,63.0349593272
slant_up,61.6587233282,64.1000234779
slant_up,71.5450389858,72.657716331
slant_up,49.0409566406,77.3625832678
slant_up,51.8868880222,80.1136076892
slant_up,57.968981435,85.3560457326
slant_up,54.855664646,83.7833976656
slant_up,54.1331954613,83.7939960824
slant_up,51.3088252568,80.1363911553
slant_up,61.1203943844,88.7040529069
slant_up,55.5638650304,85.810375144099993
slant_up,55.044123361,83.5414106324
slant_up,50.4441853247,78.1958883115
slant_up,43.8277089981,71.0470522123
slant_up,37.7914323802,66.8546410275
slant_up,29.292783111,59.79199693
slant_up,32.1920969515,60.2006509147
slant_up,51.4339355233,99.2568672885
slant_up,67.4641398118,95.999963905
slant_up,65.1507052757,92.502633736799993
slant_up,65.5834276962,93.5170609365
slant_up,69.2889731377,99.5795911254
slant_up,81.2694405511,80.635944933
slant_up,78.5757448361,76.8157030942
slant_up,74.1867734997,74.3442041467
slant_up,72.622209414,74.5269656511
slant_up,75.1415195918,73.8196684648
slant_up,75.168667839,73.9004448762
slant_up,85.3242028911,55.3885788252
slant_up,84.090507598,56.301968006
slant_up,86.2562238205,55.8309303793
slant_up,92.5487933153,42.9019079116
slant_up,90.3426345089,37.7803861004
slant_up,85.8191629042,37.5713861819
slant_up,90.4418181137,40.1331134204
slant_up,92.0175590822,39.9179311324
slant_up,95.2605278366,46.008830272
slant_up,41.2902998033,42.3115524113
slant_up,66.4313243161,36.5361097353
slant_up,63.9863468858,32.7134316129
slant_up,61.2696820905,29.3857240482
slant_up,60.7493891909,28.0517363383
slant_up,64.6552305634,16.6122765086
slant_up,68.6382807138,18.5080128963
slant_up,65.7766651568,16.7876560655
slant_up,71.1341263421,19.3859575313
slant_up,63.7231835039,14.5214211957
slant_up,73.0014940701,24.0738125371
slant_up,72.436657497,20.5783451136
slant_up,68.4127671225,19.9131265443
slant_up,52.8583150204,20.2350610035
slant_up,53.5299526734,24.2419155845
slant_up,50.7597410528,18.0893946004
slant_up,42.53480844,10.1698684594
slant_up,41.5303978512,13.3962907452
slant_up,46.7145179915,15.6132744651
slant_up,48.4506176492,16.2122782224
slant_up,59.6326101247,7.05803719901
slant_up,61.6185682473,13.4108227184
slant_up,48.8339891275,17.7259558674
slant_up,45.3426531889,13.9088123935
slant_up,42.4150122932,11.6937810961
slant_up,58.9347650647,9.36920121911
slant_up,60.6836260407,10.6326415569
slant_up,54.8117983683,6.56964870325
slant_up,61.5868424253,11.0275858356
slant_up,59.7160077628,11.5190968617
slant_up,58.4163840114,5.64577748328
slant_up,59.243809528,10.5401420943
slant_up,56.5943646385,8.91734404523
slant_up,68.4925132247,17.9873634289
slant_up,65.0059431717,15.9126686464
slant_up,63.9210367078,15.6209610332
slant_up,53.5129705438,5.87510952836
slant_up,57.8328062743,9.22238462333
slant_up,31.0329174395,28.9281418896
slant_up,31.3332440932,32.5385694785
slant_up,86.4015498466,38.7469331743
slant_up,47.4421116354,98.1843018589
slant_up,46.2647413368,94.1161921613
slant_up,40.1638157437,87.4486723469
slant_down,52.8720214902,97.3432226575
slant_down,59.0141444945,93.5748748733
slant_down,56.3751090389,96.30514763
slant_down,37.8391996844,94.359443503
slant_down,39.8853734176,90.6346620817
slant_down,44.0774051326,84.1258533023
slant_down,31.4970254888,67.912562156800007
slant_down,25.9525965456,73.0331803541
slant_down,36.4347239148,62.2940454639
slant_down,24.997482691,75.4415616626
slant_down,32.2462751352,70.1105868383
slant_down,18.1094722949,53.7081103324
slant_down,21.7960992263,49.4995295248
slant_down,24.150491069,47.1885335266
slant_down,28.6031956015,44.2237227
slant_down,20.9319996761,51.6462354868
slant_down,35.4355325251,34.9610381566
slant_down,44.3773828236,57.6847369215
slant_down,46.313692406,55.6855917703
slant_down,46.3860739231,51.0021645381
slant_down,42.4954400876,56.9036815315
slant_down,44.3005150328,58.1329592781
slant_down,46.9882833458,55.4206367313
slant_down,52.4215231623,47.867005488
slant_down,64.090998189,68.6509850107
slant_down,63.0168717563,68.2252589114
slant_down,67.3025779226,64.4134627173
slant_down,67.2259568904,62.4764105301
slant_down,50.309988715,47.2678818553
slant_down,45.4126389249,53.8707976895
slant_down,54.0206071815,47.2698972057
slant_down,49.8420222483,50.5765522936
slant_down,50.7132995657,48.7722867825
slant_down,55.0455549106,45.9862727459
slant_down,37.5437012597,32.8840244657
slant_down,39.7958978066,28.4432191156
slant_down,28.5233910215,39.7966662481
slant_down,31.3996460012,39.2652632229
slant_down,39.2415652162,33.3614166846
slant_down,27.7140565712,42.2500516253
slant_down,32.9607035213,35.8231112903
slant_down,35.4047362397,31.9391621952
slant_down,51.6422264225,50.8383406788
slant_down,34.207620843,33.5938054385
slant_down,36.5234892198,35.6710483891
slant_down,28.4192021281,21.3157482481
slant_down,26.1604969417,23.0422314726
slant_down,40.435327397,27.6400711421
slant_down,44.544955314,27.3622426221
slant_down,40.1237272008,30.0731619402
slant_down,42.1848064503,28.5736747331
slant_down,40.0026592892,27.4875100027
slant_down,57.1252310509,42.7390191388
slant_down,60.375744968,41.3564579961
slant_down,55.1058961252,46.1490510561
slant_down,61.7372710245,38.5848440052
slant_down,55.7412443246,46.6535769763
slant_down,58.2964084158,41.5831977346
slant_down,57.0425482213,42.418757739
slant_down,76.7756112073,55.2545987009
slant_down,71.8870772602,59.2669926152
slant_down,73.7883730663,58.6208121164
slant_down,75.1396847343,54.2445521781
slant_down,64.5963189058,65.952512925
slant_down,46.9095386323,85.6022611586
slant_down,46.9051031994,81.5656424136
slant_down,49.8069877356,82.085025592
slant_down,48.8632418189,83.1583574877
slant_down,66.7481899024,84.0048341677
slant_down,62.3597662841,90.2436599196
slant_down,47.3748964954,83.4715555182
slant_down,47.4464667165,82.622124014
slant_down,53.385280634,78.8711362558
slant_down,49.4527077733,79.9306028004
slant_down,54.8026825363,75.3639849893
slant_down,37.0882451339,60.857227495
slant_down,32.3759619238,68.5108204552
slant_down,37.4770138847,63.7886855744
slant_down,52.4066488967,96.4254150057
slant_down,50.2970432655,99.6441791736
slant_down,61.5633243835,89.8641388605
slant_down,61.0865603919,89.2243556475
slant_down,59.2364904011,91.4811005766
slant_down,66.1540050863,84.1119370252
slant_down,67.2313347767,85.055640808
slant_down,73.7099068702,78.2706108976
slant_down,76.5804513576,72.8915336827
slant_down,78.8765811639,71.5625276804
slant_down,77.4490021363,72.4473094857
slant_down,86.8537073476,65.5433240194
slant_down,79.806531301,52.7231797883
slant_down,76.9882734745,54.2027848022
slant_down,79.4793575017,49.1410154455
slant_down,82.3041595613,46.9909036215
slant_down,90.700691247,41.4667030063
slant_down,95.4434878077,36.1897016148
slant_down,94.9974880471,35.0953011066
slant_down,91.517847246,36.8902631263
slant_down,62.2926421901,40.0295333141
slant_down,59.2034756073,41.2706776667
slant_down,65.2563927704,32.8541041237
slant_down,62.4447424979,35.4149992261
slant_down,72.4624062907,27.6242638254
slant_down,69.9194262552,29.3110927191
slant_down,77.7628590782,23.4913735562
slant_down,72.7784101997,26.9005353695
slant_down,65.198316667,33.0271717859
slant_down,69.4598588916,30.1970315053
slant_down,59.3150555205,12.3543136666
slant_down,51.487713355,20.8436106875
slant_down,57.1124475509,15.3217851726
slant_down,50.2244178157,19.1709698793
slant_down,50.4338611907,18.5348708515
slant_down,56.3803054046,14.7884597101
slant_down,54.8635045999,14.009611915
slant_down,45.4998576493,3.98542629287
slant_down,49.9367453057,21.5900969196
slant_down,53.8098729164,17.7664144512
slant_down,59.8526782804,9.03994992133
slant_down,48.1756567942,19.5212153543
slant_down,50.7417190667,17.8384056087
slant_down,58.4597612975,14.1486628546
slant_down,50.1145975193,1.74146171252
slant_down,45.4203820755,5.37240899542
slant_down,51.3532681954,0.30387242055
slant_down,53.091704424,19.2900304453
slant_down,58.9431665444,11.6128777918
slant_down,59.3109904219,10.5721363739
slant_down,68.2221986595,1.13388036584
slant_down,62.5117719862,7.49123248279
slant_down,69.3800563617,1.48813233299
slant_down,82.8002478704,18.5293762368
slant_down,85.1603321777,15.0183695439
slant_down,67.095847697,0.601490941965
slant_down,62.307750573,5.74997471945
slant_down,59.9704150458,7.9133104735
slant_down,39.9116351739,32.1440226145
slant_down,39.5965009783,32.1361317349
slant_down,95.5934163965,33.2341293953
slant_down,52.772288113,99.6134716833
slant_down,53.1786144535,98.6038611855
slant_down,37.6270534612,93.060672952
wide_lines,65.8155400946,95.5883740582
wide_lines,65.6722651618,91.9334018119
wide_lines,39.002716451,92.26183816
wide_lines,37.7953028026,93.5324553607
wide_lines,35.5139005857,89.5991901138
wide_lines,39.2194529062,83.5434818364
wide_lines,31.5882013862,77.0280524208
wide_lines,32.6577782482,80.1138612983
wide_lines,31.6415992679,77.6108331874
wide_lines,30.9871426099,63.9440280336
wide_lines,27.4396322054,65.7444629564
wide_lines,30.5783699449,65.5219454667
wide_lines,28.809401637,59.6210044666
wide_lines,27.9395185786,50.9850621313
wide_lines,33.8499497887,46.2844744465
wide_lines,32.628463049,54.0637204929
wide_lines,32.4386500903,49.9030194916
wide_lines,35.8382920833,53.3514883396
wide_lines,37.1420429198,49.7419879519
wide_lines,34.6445467746,54.4441077764
wide_lines,35.675404696,49.6256433471
wide_lines,64.99458547,49.4621728312
wide_lines,66.1291498342,61.6437178853
wide_lines,65.790651882,55.9453737171
wide_lines,67.5017806138,60.8502274659
wide_lines,67.6295142176,61.4291060701
wide_lines,63.9100640599,62.9723349305
wide_lines,66.5493579687,67.7255886599
wide_lines,64.0515417112,48.8200939835
wide_lines,68.1932895833,46.5435408096
wide_lines,65.2783891952,44.8203529292
wide_lines,34.9976613883,28.6329939351
wide_lines,33.9237661692,53.5586885227
wide_lines,66.0044543688,52.6846691452
wide_lines,37.0232562464,32.1184816794
wide_lines,34.6982700852,36.4753541349
wide_lines,34.8634441715,30.9392745218
wide_lines,31.0900650789,32.3837547196
wide_lines,34.9213061465,35.4184380529
wide_lines,30.343361183,32.5245631742
wide_lines,35.4833288685,44.4916349303
wide_lines,33.2349104271,38.502483721
wide_lines,35.4399436182,47.7975176939
wide_lines,33.8735095227,37.056028453
wide_lines,28.5641377966,34.6263997171
wide_lines,31.3195486706,31.6639905316
wide_lines,30.796174379,23.5190343602
wide_lines,34.2333554347,22.4959116015
wide_lines,36.6307877065,31.4768312621
wide_lines,34.5486191018,26.1110878654
wide_lines,37.5196356,29.2676058936
wide_lines,62.4256973267,34.0442062707
wide_lines,64.320383794,31.7856294846
wide_lines,65.4455325117,43.2734991936
wide_lines,64.3256315887,41.6159763773
wide_lines,65.264338195,35.7175447772
wide_lines,66.388704175,38.8447443366
wide_lines,68.1914228192,45.1694864796
wide_lines,68.5406624515,48.4385263389
wide_lines,67.6614312657,51.0685845873
wide_lines,68.6755160534,50.465234811
wide_lines,69.0817099788,55.4740530987
wide_lines,69.048716493,66.3660457477
wide_lines,67.3082233775,71.5902965807
wide_lines,38.714899408,76.3969778172
wide_lines,35.5480948795,89.3049758407
wide_lines,36.7106729424,86.0749670003
wide_lines,64.9126624396,87.6457960566
wide_lines,66.0641357377,89.2086685815
wide_lines,64.9359294757,87.0721381174
wide_lines,67.0265507063,76.2225153324
wide_lines,65.3140322257,77.9387440331
wide_lines,64.2952177764,84.1258572133
wide_lines,38.7980121423,74.6106304299
wide_lines,34.6757573144,79.6375987743
wide_lines,30.7192619427,58.812060082
wide_lines,34.1051509268,64.1291972267
wide_lines,33.4233718511,67.0957433613
wide_lines,66.3138096741,98.9310270371
wide_lines,65.3096314498,98.1651568396
wide_lines,65.7140760682,99.2837639519
wide_lines,67.5934531877,90.9519098246
wide_lines,66.3880173202,89.2812304744
wide_lines,67.8061881135,91.6881773501
wide_lines,70.9626103129,86.5181213517
wide_lines,71.9936371714,78.8209480695
wide_lines,72.4798343312,80.8006830564
wide_lines,74.0784292286,72.9515308522
wide_lines,72.0362880189,69.7160484161
wide_lines,72.9981862717,59.6656447092
wide_lines,74.8121312339,57.5898837631
wide_lines,73.0273050243,46.2741878725
wide_lines,77.067111934,51.4869181896
wide_lines,75.0171368727,46.6224426489
wide_lines,76.6653077326,38.440250966
wide_lines,77.9158742329,45.9268433826
wide_lines,73.7420460836,39.1209853231
wide_lines,75.3298157891,32.8303519164
wide_lines,63.4104355141,38.377735614
wide_lines,68.856486669,43.084147214
wide_lines,66.3377850519,33.3065100022
wide_lines,64.2037185014,26.6441143003
wide_lines,64.4986348346,22.863501327
wide_lines,68.8909906096,27.2962056672
wide_lines,72.371523338,21.9616397473
wide_lines,69.7654249704,19.999850454
wide_lines,68.6213124429,18.9156764428
wide_lines,64.2977371716,20.4287496884
wide_lines,66.6992650902,18.5910853404
wide_lines,67.5445276811,16.4479381344
wide_lines,63.9469519836,18.6928454476
wide_lines,64.3881920705,15.7728122808
wide_lines,65.570045691,23.7657582226
wide_lines,38.4028368753,19.0468586722
wide_lines,37.8323600164,14.4694894463
wide_lines,36.9041611715,13.5838157511
wide_lines,36.286143052,17.1057707266
wide_lines,62.7866325947,13.9189931024
wide_lines,66.8176792234,11.4124971575
wide_lines,66.755021412,18.0853051378
wide_lines,65.4155283864,10.4635122068
wide_lines,36.9463314417,13.5143774996
wide_lines,37.8254347391,9.60103429534
wide_lines,36.722837943,9.33330210686
wide_lines,67.0733217806,6.04921458162
wide_lines,64.601818107,12.0019169643
wide_lines,65.4372821806,15.5453860785
wide_lines,67.0040223792,15.3458266393
wide_lines,66.7241920702,5.24980548075
wide_lines,68.3076187632,13.2809165227
wide_lines,68.7680482759,13.5214565521
wide_lines,74.1672717461,5.34988087254
wide_lines,64.9003579699,16.2452583689
wide_lines,68.7634335463,8.70057294385
wide_lines,66.8169139163,12.2732943361
wide_lines,67.3093466467,0.217006270014
wide_lines,34.7318293093,19.6017950724
wide_lines,33.6744421497,26.09049021
wide_lines,75.6272550236,37.128751949
wide_lines,40.6101254225,89.1362398699
wide_lines,39.1143664549,96.4817513202
wide_lines,34.5838289299,89.5889019877
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment