Skip to content
Snippets Groups Projects
Commit 1fe38f90 authored by Peter Gerwinski's avatar Peter Gerwinski
Browse files

Weitere Beispiele 17.4.2023: Gleitkommazahlen

parent 79ee7306
Branches
No related tags found
No related merge requests found
Showing with 578 additions and 0 deletions
Gleitkommazahlen, 17.04.2023, 18:12:52
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
https://de.wikipedia.org/wiki/IEEE_754-2008
Die Zahl 2.351 · 10^5
kann man auch 0.2351 · 10^6
oder 0.02351 · 10^7
schreiben.
Welche dieser Varianten ist hinsichtlich Speicherplatz am ineffizientesten?
0.02351 · 10^7 --> benötigt 7 Zeichen für die Mantisse
Welche dieser Varianten ist hinsichtlich Speicherplatz am effizientesten?
Beide:
2.351 · 10^5 4 Ziffern für die Mantisse (Konvention: immer 1 Ziffer vor dem Komma)
0.2351 · 10^6 4 Ziffern für die Mantisse (Konvention: immer eine 0 vor dem Komma)
Bei Binärzahlen:
1.11011 · 2^101 (Konvention: immer eine 1 vor dem Komma) "normalisierte Zahl"
0.111011 · 2^110 (Konvention: immer eine 0 vor dem Komma)
--> Man braucht die Ziffer vor dem Komma nicht mit zu speichern (wegen Konvention).
Wenn vor dem Komma eine 0 steht, muß dahinter eine 1 stehen (wegen Konvention).
--> Wieder beide gleich. (In beiden Fällen brauchen wir nur 5 Binärziffern zu speichern.)
Standard: IEEE 754 (2008)
Gleitkommazahlen immer normalisiert speichern, die führende 1 nicht mitspeichern.
Beispiel: Kodierung einer 32-Bit-Gleitkommazahl:
https://upload.wikimedia.org/wikipedia/commons/5/56/IEEE-754-single.svg
V EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
V = Vorzeichen-Bit
E = "Charakteristik" Siehe: https://de.wikipedia.org/wiki/IEEE_754
M = Mantisse
Aufgabe: Schreibe ein Progrämmchen, das eine float-Variable lesbar ausgibt,
ohne printf() mit "%f" zu verwenden, also durch Analysieren der Bits.
Die Aufgabe ist erfüllt, wenn wir die Mantisse (mit Vorzeichen) und den (binären)
Exponenten kennen. Um danach die Dezimalzahl korrekt auszugeben, ist auch
Gleitkommaarithmetik sowie printf() mit "%f" (oder besser: "%e") erlaubt.
/*
* chardev.c: Creates a read-only char device that says how many times
* you've read from the dev file
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <asm/uaccess.h> /* for put_user */
MODULE_LICENSE("GPL");
/*
* Prototypes - this would normally go in a .h file
*/
int init_module(void);
void cleanup_module(void);
static int device_open(struct inode *, struct file *);
static int device_release(struct inode *, struct file *);
static ssize_t device_read(struct file *, char *, size_t, loff_t *);
static ssize_t device_write(struct file *, const char *, size_t, loff_t *);
struct class *dev_Class;
struct device *chr_dev;
#define SUCCESS 0
#define DEVICE_NAME "chardev" /* Dev name as it appears in /proc/devices */
#define BUF_LEN 80 /* Max length of the message from the device */
/*
* Global variables are declared as static, so are global within the file.
*/
static int Major; /* Major number assigned to our device driver */
static int Device_Open = 0; /* Is device open?
* Used to prevent multiple access to device */
static char msg[BUF_LEN]; /* The msg the device will give when asked */
static char *msg_Ptr;
static struct file_operations fops = {
.read = device_read,
.write = device_write,
.open = device_open,
.release = device_release
};
/*
* This function is called when the module is loaded
*/
int init_module(void)
{
Major = register_chrdev(0, DEVICE_NAME, &fops);
if (Major < 0) {
printk(KERN_ALERT "Registering char device failed with %d\n", Major);
return Major;
}
// Create module class
printk(KERN_INFO "Creating device class ...\n");
dev_Class = class_create(THIS_MODULE,DEVICE_NAME);
if( dev_Class == NULL)
{
printk( KERN_ALERT "Error! Class couldn't be created!\n" );
return 1 ;
}
printk( KERN_INFO "Class created!\n" );
// Create device in /dev/...
printk(KERN_INFO "Creating device\n");
chr_dev = device_create(dev_Class, NULL, MKDEV(Major,0), NULL, DEVICE_NAME);
printk(KERN_INFO "I was assigned major number %d. To talk to\n", Major);
printk(KERN_INFO "the driver, create a dev file with\n");
printk(KERN_INFO "'mknod /dev/%s c %d 0'.\n", DEVICE_NAME, Major);
printk(KERN_INFO "Try various minor numbers. Try to cat and echo to\n");
printk(KERN_INFO "the device file.\n");
printk(KERN_INFO "Remove the device file and module when done.\n");
return SUCCESS;
}
/*
* This function is called when the module is unloaded
*/
void cleanup_module(void)
{
/*
* Unregister the device
*/
unregister_chrdev(Major, DEVICE_NAME);
}
/*
* Methods
*/
/*
* Called when a process tries to open the device file, like
* "cat /dev/mycharfile"
*/
static int device_open(struct inode *inode, struct file *file)
{
static int counter = 0;
if (Device_Open)
return -EBUSY;
Device_Open++;
sprintf(msg, "I already told you %d times Hello world!\n", counter++);
msg_Ptr = msg;
try_module_get(THIS_MODULE);
return SUCCESS;
}
/*
* Called when a process closes the device file.
*/
static int device_release(struct inode *inode, struct file *file)
{
Device_Open--; /* We're now ready for our next caller */
/*
* Decrement the usage count, or else once you opened the file, you'll
* never get get rid of the module.
*/
module_put(THIS_MODULE);
return 0;
}
/*
* Called when a process, which already opened the dev file, attempts to
* read from it.
*/
static ssize_t device_read(struct file *filp, /* see include/linux/fs.h */
char *buffer, /* buffer to fill with data */
size_t length, /* length of the buffer */
loff_t * offset)
{
/*
* Number of bytes actually written to the buffer
*/
int bytes_read = 0;
/*
* If we're at the end of the message,
* return 0 signifying end of file
*/
if (*msg_Ptr == 0)
return 0;
/*
* Actually put the data into the buffer
*/
while (length && *msg_Ptr) {
/*
* The buffer is in the user data segment, not the kernel
* segment so "*" assignment won't work. We have to use
* put_user which copies data from the kernel data segment to
* the user data segment.
*/
put_user(*(msg_Ptr++), buffer++);
length--;
bytes_read++;
}
/*
* Most read functions return the number of bytes put into the buffer
*/
return bytes_read;
}
/*
* Called when a process writes to dev file: echo "hi" > /dev/hello
*/
static ssize_t
device_write(struct file *filp, const char *buff, size_t len, loff_t * off)
{
printk(KERN_ALERT "Sorry, this operation isn't supported.\n");
return -EINVAL;
}
#include <stdio.h>
#include <stdint.h>
#define B 127
int main (void)
{
float G = 6.6743e-11;
uint32_t *g = (uint32_t *) &G;
int8_t sign = !!(*g & (1 << 31));
uint8_t ch = (*g >> 23);
int ex = ch - B;
int32_t mant = (*g & 0x7fffff) | 0x800000;
if (sign)
mant *= -1;
printf ("%d·2^%d\n", mant, ex);
return 0;
}
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#define B 127
int main (void)
{
float G = 6.6743e-11;
uint32_t *g = (uint32_t *) &G;
int8_t sign = !!(*g & (1 << 31));
uint8_t ch = (*g >> 23);
int ex = ch - B - 23;
int32_t mant = (*g & 0x7fffff) | 0x800000;
if (sign)
mant *= -1;
printf ("%d·2^%d\n", mant, ex);
printf ("= %e\n", mant * pow (2.0, ex));
return 0;
}
#include <stdio.h>
float f (float x)
{
return x * x;
}
float df_a (float x)
{
return 2.0 * x;
}
float df_n (float x)
{
float dx = 0.0000001;
float df = f (x + 0.5 * dx) - f (x - 0.5 * dx);
return df / dx;
}
int main (void)
{
for (float x = -3.0; x <= 3.0; x += 0.1)
printf ("%10f%10f%10f%10f\n", x, f (x), df_a (x), df_n (x));
return 0;
}
plot "deriv-01.dat" using 1:2 with lines title "f(x)", \
"deriv-01.dat" using 1:3 with lines title "df_a(x)", \
"deriv-01.dat" using 1:4 with lines lc "red" dashtype "-" title "df_n(x)"
pause -1
#include <stdio.h>
float f (float x)
{
return x * x * x;
}
float df_a (float x)
{
return 3.0 * x * x;
}
float df_n (float x)
{
float dx = 0.1;
float df = f (x + 0.5 * dx) - f (x - 0.5 * dx);
return df / dx;
}
int main (void)
{
for (float x = -3.0; x <= 3.0; x += 0.1)
printf ("%11f %11f %11f %11f\n", x, f (x), df_a (x), df_n (x));
return 0;
}
plot "deriv-02.dat" using 1:2 with lines title "f(x)", \
"deriv-02.dat" using 1:3 with lines title "df_a(x)", \
"deriv-02.dat" using 1:4 with lines lc "red" dashtype "-" title "df_n(x)"
pause -1
#include <stdio.h>
float f (float x)
{
return x * x * x;
}
float df_a (float x)
{
return 3.0 * x * x;
}
float df_n (float x)
{
float dx = 0.0000001;
float df = f (x + dx) - f (x);
return df / dx;
}
int main (void)
{
for (float x = -3.0; x <= 3.0; x += 0.1)
printf ("%11f %11f %11f %11f\n", x, f (x), df_a (x), df_n (x));
return 0;
}
plot "deriv-03.dat" using 1:2 with lines title "f(x)", \
"deriv-03.dat" using 1:3 with lines title "df_a(x)", \
"deriv-03.dat" using 1:4 with lines lc "red" dashtype "-" title "df_n(x)"
pause -1
#include <stdio.h>
#include <math.h>
float f (float x)
{
return pow (3, x); /* = exp (x * log (3)) */
}
float df_a (float x)
{
return log (3) * pow (3, x);
}
float df_n (float x)
{
float dx = 0.0000001;
float df = f (x + dx) - f (x);
return df / dx;
}
int main (void)
{
for (float x = -3.0; x <= 3.0; x += 0.1)
printf ("%11f %11f %11f %11f\n", x, f (x), df_a (x), df_n (x));
return 0;
}
plot "deriv-04.dat" using 1:2 with lines title "f(x)", \
"deriv-04.dat" using 1:3 with lines title "df_a(x)", \
"deriv-04.dat" using 1:4 with lines lc "red" dashtype "-" title "df_n(x)"
pause -1
#include <stdio.h>
#include <math.h>
float f (float x)
{
return sin (1.0 / x);
}
float df_a (float x)
{
return -cos (1.0 / x) / (x * x); /* pow (x, 2) würde exp (x * log (2)) berechnen --> teuer */
}
float df_n (float x)
{
float dx = 0.0000001;
float df = f (x + dx) - f (x);
return df / dx;
}
int main (void)
{
for (float x = 0.3; x <= 3.0; x += 0.1)
printf ("%11f %11f %11f %11f\n", x, f (x), df_a (x), df_n (x));
return 0;
}
plot "deriv-05.dat" using 1:2 with lines title "f(x)", \
"deriv-05.dat" using 1:3 with lines title "df_a(x)", \
"deriv-05.dat" using 1:4 with lines lc "red" dashtype "-" title "df_n(x)"
pause -1
#include <stdio.h>
#include <math.h>
int main (void)
{
float dx = 0.000001;
float y = 1.0;
for (float x = 0.0; x <= 4.0; x += dx)
{
printf ("%10f%10f%10f\n", x, exp (x), y);
y += y * dx;
}
return 0;
}
plot "dgl-01.dat" using 1:2 with lines title "exp(x)", \
"dgl-01.dat" using 1:3 with lines dashtype "-" title "y(x)"
pause -1
#include <stdio.h>
#include <math.h>
/* exp(x) = Summe aller x^n / n! für n = 0 bis Unendlich */
/* n! = 1 · 2 · 3 · ... · n */
int main (void)
{
float x = 2.0;
printf ("%0.9f\n", exp (x));
float S = 0.0;
for (int i = 0; i <= 120; i++)
{
float P = 1.0;
float F = 1.0;
for (int j = 1; j <= i; j++)
{
P *= x;
F *= j;
}
S += P / F;
}
printf ("%0.9f\n", S);
S = 0.0;
for (int i = 120; i >= 0; i--)
{
float P = 1.0;
float F = 1.0;
for (int j = 1; j <= i; j++)
{
P *= x;
F *= j;
}
S += P / F;
}
printf ("%0.9f\n", S);
return 0;
}
#include <stdio.h>
#include <math.h>
/* exp(x) = Summe aller x^n / n! für n = 0 bis Unendlich */
/* n! = 1 · 2 · 3 · ... · n */
int main (void)
{
float x = 2.0;
printf ("%0.9f\n", exp (x));
float S = 0.0;
for (int i = 0; i <= 200; i++)
{
float P = 1.0;
float F = 1.0;
for (int j = 1; j <= i; j++)
{
P *= x;
F *= j;
}
S += P / F;
}
printf ("%0.9f\n", S);
S = 0.0;
for (int i = 200; i >= 0; i--)
{
float P = 1.0;
float F = 1.0;
for (int j = 1; j <= i; j++)
{
P *= x;
F *= j;
}
S += P / F;
}
printf ("%0.9f\n", S);
return 0;
}
#include <stdio.h>
#include <math.h>
/* exp(x) = Summe aller x^n / n! für n = 0 bis Unendlich */
/* n! = 1 · 2 · 3 · ... · n */
int main (void)
{
float x = 2.0;
printf ("%0.9f\n", exp (x));
float S = 0.0;
for (int i = 0; i <= 200; i++)
{
float acc = 1.0;
for (int j = 1; j <= i; j++)
{
acc *= x;
acc /= j;
}
S += acc;
}
printf ("%0.9f\n", S);
S = 0.0;
for (int i = 200; i >= 0; i--)
{
float acc = 1.0;
for (int j = 1; j <= i; j++)
{
acc *= x;
acc /= j;
}
S += acc;
}
printf ("%0.9f\n", S);
return 0;
}
#include <stdio.h>
#include <math.h>
/* exp(x) = Summe aller x^n / n! für n = 0 bis Unendlich */
/* n! = 1 · 2 · 3 · ... · n */
int main (void)
{
float x = 2.0;
printf ("%0.9f\n", exp (x));
float S = 0.0;
for (int i = 0; i <= 1000; i++)
{
float acc = 1.0;
for (int j = 1; j <= i; j++)
{
acc *= x;
acc /= j;
}
S += acc;
}
printf ("%0.9f\n", S);
S = 0.0;
for (int i = 1000; i >= 0; i--)
{
float acc = 1.0;
for (int j = 1; j <= i; j++)
{
acc *= x;
acc /= j;
}
S += acc;
}
printf ("%0.9f\n", S);
return 0;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment