Skip to content
Snippets Groups Projects
Commit c09ded41 authored by Silas Dohm's avatar Silas Dohm
Browse files

fixed earlystop

parent 5153a47f
Branches
No related tags found
No related merge requests found
......@@ -28,7 +28,7 @@ num_rows = 4.8E6
batchSize = 2048
steps = num_rows/batchSize
#early stop
earlystop = keras.callbacks.EarlyStopping(monitor='sparse_categorical_accuracy',patience=10,verbose=False,restore_best_weights=True)
earlystop = keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_accuracy',patience=5,verbose=False,restore_best_weights=True)
cbList = [earlystop]
trainData = hdf5Generator(path + "w2vCNN.hdf5", batchSize, "Train")
......
......@@ -72,7 +72,7 @@ modelNN.compile(optimizer='adam',loss='categorical_crossentropy',metrics=["spars
# %% fit
#early stop
earlystop = keras.callbacks.EarlyStopping(monitor='sparse_categorical_accuracy',patience=10,verbose=False,restore_best_weights=True)
earlystop = keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_accuracy',patience=10,verbose=False,restore_best_weights=True)
cbList = [earlystop]
train = generate_arrays_from_file('./train.json',batchSize)
......
......@@ -64,7 +64,7 @@ modelNN.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=
# %% fit
#early stop
earlystop = keras.callbacks.EarlyStopping(monitor='sparse_categorical_accuracy',patience=5,verbose=False,restore_best_weights=True)
earlystop = keras.callbacks.EarlyStopping(monitor='val_sparse_categorical_accuracy',patience=5,verbose=False,restore_best_weights=True)
cbList = [earlystop]
count = np.unique(Y_train,return_counts=True)[1]
cWeight = 1/(count/Y_train.size)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment